Resposta. Resposta: Olá, Para que um sistema seja determinado, o determinante da matriz correspondente a esse tal sistema deve ser diferente 0.
Um sistema linear é homogêneo quando os coeficientes, independente de todas as suas equações lineares, são iguais a zero. Esse tipo de sistema possui pelo menos uma solução possível, pois podemos obter como resultado o terno (0, 0, 0), chamamos de solução nula ou trivial.
Uma EDO que está na forma normal y'=f(x,y) é homogênea se a função f=f(x,y) é homogênea de grau zero. Exemplos de EDO homogêneas: y'=(x²+y²)/xy.
Dizemos que a equação Mdx+Ndy=0 é exata se: My=Nx. Exemplos: A forma diferencial 3x2y2dx+2x3ydy=0 é exata pois existe F(x,y)=x3y2 cuja diferencial exata coincide com o membro da esquerda da equação dada.
Para resolvermos uma equação diferencial separável, basta separarmos as variáveis e em seguida integramos ambos os membros.
Em física, biologia e outras áreas, a modelagem de um sistema frequentemente resulta em um problema de valor inicial (também chamado de P.V.I.) a ser solucionado; nesse contexto, a equação diferencial é uma equação evolutiva especificando como o sistema evoluirá ao longo do tempo dadas condições iniciais.
Classificação