O processo de carga inicia quando fechamos a chave S. No instante imediato a este fechamento (t=0) o circuito comporta-se como se o capacitor n˜ao existisse. Portanto a corrente i no instante t=0 é igual a V0/R. A medida que o capacitor é carregado esta corrente diminui.
τ = R x C = 1000Ω x 1000 x 10-6F = 1 segundo. Assim, este capacitor levará 1 segundo para que usa carga acumulada atinja 63% do valor da tensão da fonte. Como um capacitor demora cinco constantes de tempo para ser considerado carregado, este capacitor demorará 1 x 5 = 5s para possui carga total (tensão da fonte).
A carga é armazenada na superfície das placas, no limite com o dielétrico. Devido ao fato de cada placa armazenar cargas iguais, porém opostas, a carga total no dispositivo é sempre zero. Quando uma diferença de potencial V = Ed é aplicada às placas deste capacitor simples, surge um campo elétrico entre elas.
Calcula-se a capacitância (C) de um capacitor por meio da razão entre a carga (Q) que ele armazena em uma de suas armaduras e a tensão (V) aplicada a ele, ou seja, C = Q / V.
farad
Isso confirma o que foi dito acima que 1 Farad é equivalente à um coulomb/volt. É importante saber que existem supercapacitores que possuem valores de capacitância que podem atingir dezenas ou centenas de Farads.
Lembre-se: reconhecer um capacitor de tântalo SMD é fácil. Ele sempre terá uma faixa em cor diferente do restante da carcaça marcando o polo positivo, poderá ter a cor amarela ou preta, formato retangular e o encapsulamento normalmente é feito de epóxi.
Já os capacitores permanentes são usados em motores monofásicos pequenos (baixa potência), onde o torque é baixo. Esse capacitor é usado em conjunto com a bobina do motor sem uso da chave centrífuga/platinado, trabalhando durante todo o período de funcionamento do motor.