A derivada de uma função y = f(x) num ponto x = x0, é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y=f(x), no ponto x = x0, ou seja, a derivada é o coeficiente angular da reta tangente ao gráfico da função no ponto x0.
1. Se a função y=f(x) admite derivada em um ponto, dizemos que a função é derivável nesse ponto. 2. Se a função y=f(x) admite derivada em todos os pontos de um intervalo, dizemos que a função é derivável nesse intervalo.
Diremos que uma função f(x, y) é diferenciável em B ⊂ Df se f(x, y) é diferenciável em todos os pontos de B. Se f(x, y) for diferenciável em Df , diremos, simplesmente, que f(x, y) é diferenciável. 2 − {(0, 0)}, logo f(x, y) é diferenciável nesse conjunto.
Para saber se uma função de mais de uma variável é diferenciável, existem três teoremas:
A formação de uma função do 1º grau é expressa da seguinte forma: y = ax + b, onde a e b são números reais e a é diferente de 0. ... Toda função é definida por uma lei de formação, no caso de uma função do 1º grau a lei de formação será a seguinte: y = ax + b, onde a e b são números reais e a ≠ 0.
Na construção de um gráfico de uma função do 1º grau basta indicar apenas dois valores pra x, pois o gráfico é uma reta e uma reta é formada por, no mínimo, 2 pontos. Apenas um ponto corta o eixo x, e esse ponto é a raiz da função. Apenas um ponto corta o eixo y, esse ponto é o valor de b.
A função que representa o quadrado de um número é dada através da função f(x) = x² ou y = x².
Um quadrado perfeito ou número quadrado perfeito é um número natural que se radicado, possui como resultado outro número natural. Ou seja, são resultados da operação de um número multiplicado por ele mesmo. A fórmula do quadrado perfeito é representada por: n × n = a ou n2 = a.
Número quadrado, em matemática, é um inteiro que pode ser escrito como o quadrado de outro número inteiro. Ou ainda se a raiz quadrada de um número inteiro for outro inteiro, o primeiro é um número quadrado.