Se o vértice será ponto de máximo ou de mínimo, basta analisar a concavidade da parábola: Se a < 0, a parábola possui ponto de máximo. Se a > 0, a parábola possui ponto de mínimo. Observe que, quando a função possui duas raízes reais, xv ficará no ponto médio do segmento, cujas extremidades são as raízes da função.
A regra básica para identificar um possível ponto de inflexão é "se a terceira derivada de uma função for diferente de zero, ou seja, f′′′(x) ≠ 0, então o possível ponto de inflexão é de fato um ponto de inflexão".
Pontos de inflexão são pontos onde a função muda de concavidade, ou seja, de ser "côncava para cima" para ser "côncava para baixo" ou vice-versa. Eles podem ser encontrados determinando onde a derivada de segunda ordem muda de sinal.
Em cálculo diferencial, um ponto de inflexão ou simplesmente inflexão, é um ponto sobre uma curva na qual a curvatura (a derivada de segunda ordem) troca o sinal. A curva muda de ter curvatura côncava para cima (positiva) para concavidade para baixo (curvatura negativa), ou vice-versa.
São decisões especiais. Decisões que têm o poder de mudar o rumo do roteiro de nossa vida. A elas eu dou o nome de Ponto de Inflexão. É um conceito da matemática, mas que usaremos para ilustrar perfeitamente momentos de nossa vida que podem tomar direções opostas a depender de nossas escolhas."