Para calcular um logaritmo, temos que procurar um número que, quando elevamos a base, resulte no logaritmando. Pegando como exemplo o logaritmo de 36 na base 6 do exemplo anterior, devemos encontrar um número que, quando elevamos a base 6, resulte em 36. Como 62 = 36, sendo a resposta 2.
Base 2 a 5
Para ocorrer essas transformações é preciso obedecer algumas regras e propriedades operatórias dos logaritmos. Dado o logaritmo loga x = y de base a, para transformar o mesmo logaritmo para a base b, o logaritmo ficará assim: logb x = z.
Logaritmo de um número b na base a é igual ao expoente x ao qual se deve elevar a base, de modo que a potência ax seja igual a b, sendo a e b números reais e positivos e a≠1. Desta forma, o logaritmo é a uma operação na qual queremos descobrir o expoente que uma dada base deve ter para resultar em uma certa potência.
Há muita confusão em torno do nome do logaritmo de base e, onde e é um número irracional de valor aproximado 2,71. Muitos o têm chamado de logaritmo neperiano, outros, de logaritmo natural.
Cujo valor é aproximadamente 2,