O divergente é div F = z + xz. Se f é uma função de três variáveis que tem derivadas parciais de segunda ordem contínuas, então o rotacional do gradiente de f é o vetor nulo, ou seja, rot (∇f) = 0.
adjetivo masculino e feminino Relativo a rotação. Etimologia (origem da palavra rotacional). Rotação + al.
Em matemática, o teorema de Green relaciona a integral de linha ao longo de uma curva fechada no plano com a integral dupla sobre a região limitada por essa curva, em outras palavras, ele estabelece uma relação entre a integral dupla de uma região D e a integral de linha ao longo de sua fronteira.
O teorema de green é um ferramenta da matemática utilizada para o cálculo de áreas de figuras planas limitadas e fechada; Além disso seu principio é utilizado para formulação de outros teoremas como por exemplo o teorema de Stokes e Gauss, suas aplicações são extensas e extremamente úteis nas áreas da física, química, ...
Resumo
Resumindo, um campo vetorial é uma função que associa a cada ponto um vetor, cujas componentes variam, de ponto para ponto, de maneira contínua e diferenciável. ... Um exemplo é a densidade do fluido, que pode variar de ponto a ponto (como a densidade do ar, que depende da altitude).
Podemos interpretar o produto vetorial como um vetor perpendicular aos dois vetores iniciais, com módulo (comprimento) numericamente igual à área do paralelogramo formado com base nos dois vetores iniciais. Essa definição pode parecer arbitrária, mas possui vastas aplicações.
Aplicações. O produto vetorial ocorre na fórmula do operador vetorial rotacional. É também utilizado para descrever a Força de Lorentz experimentada por uma carga elétrica movendo-se em um campo magnético. As definições de torque e momento angular também envolvem produto vetorial.
Utilizamos a seguinte representação para o produto escalar, que também pode ser chamado de produto interno: Vamos interpretar o produto escalar geometricamente. Para dois vetores A e B, ele é definido como sendo o produto entre o módulo do vetor B e o módulo da projeção do vetor A sobre B.
A condição para que a soma de dois vetores seja nula é que esses dois vetores tenham o mesmo módulo , mesma direção , porém sentidos opostos .
Soma de vetores - Adição gráfica e por decomposição.