A função quadrática, igualmente denominada de função polinomial do 2º grau, é aquela representada pela fórmula seguinte: f(x) = ax2 + bx + c. Ou seja, “a”, “b” e “c” são números reais, só que “a” é diferente de “0”. Exemplo: f(x) = – x² + 8x – ou seja, “a” = “-1”, “b” = “8” e “c” = “0”.
Matemática. A função do 2º grau ou função quadrática é uma função de domínio real, ou seja, qualquer número real pode ser o x e, a cada número real x, associamos um número da forma ax² + bx + c.
Toda função é definida por uma lei de formação, no caso de uma função do 1º grau a lei de formação será a seguinte: y = ax + b, onde a e b são números reais e a ≠ 0. Esse tipo de função deve ser dos Reais para os Reais.
Dada a função f(x) = ax² + bx + c, podemos determinar sua raiz considerando f(x) = 0, dessa forma obtemos a equação do 2º grau ax² + bx + c = 0, que pode ser resolvida pelo método resolutivo de Bháskara.
Nas equações escritas na forma ax² + bx + c = 0 (forma normal ou forma reduzida de uma equação do 2º grau na incógnita x) chamamos a, b e c de coeficientes. a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente.
Xv = 5/2. Yv = -9/4.
Matemática. O ponto de máximo e o ponto de mínimo de uma função do 2º grau são definidos pela concavidade da parábola, se está voltada para baixo ou para cima. Toda expressão na forma y = ax² + bx + c ou f(x) = ax² + bx + c, com a, b e c números reais, sendo a ≠ 0, é denominada função do 2º grau.
O gráfico que descreve uma função do segundo grau é uma parábola. O vértice de uma parábola possui as coordenadas iguais a: x do vértice → xv = -b/2a. y do vértice → yv = -Δ/4a.
Tem mais depois da publicidade ;) Nessas fórmulas, xv e yv são as coordenadas do vértice V(xv, yv). Além dessas duas formas, também existe um método que faz uso das raízes da função para encontrar as coordenadas do vértice.
Coordenadas do ponto de interseção Suponha que as retas ax + by + c = 0 e dx + ey + f = 0 encontram-se no ponto P(xo, yo). Note que os valores das incógnitas nesse ponto serão iguais para ambas as equações e que essa é justamente a definição de um sistema de equações com duas incógnitas e duas equações.
Os pontos de intersecção entre as duas funções são as coordenadas (2, 3). Portanto, Os pontos de intersecção entre as duas funções são as coordenadas (0, 0) e (2, 4).
Ao calcularmos os pontos de intersecção entre duas funções, estamos simplesmente calculando os valores para x e y que satisfazem simultaneamente as duas funções. Dada a função y = x + 1 e y = 2x – 1, iremos calcular o ponto de intersecção das funções.
Dados dois conjuntos A = {1, 2, 3, 4, 5, 6} e B = {5, 6, 7}, a intersecção é representada pelo símbolo ∩, então A ∩ B = {5, 6}, pois 5 e 6 são os elementos que pertencem aos dois conjuntos.
Dados os conjuntos A = {c, a, r, e, t} e B = {a, e, i, o, u}, represente o conjunto união (A U B). Para encontrar o conjunto união basta juntar os elementos dos dois conjuntos dados. Temos de ter o cuidado de incluir os elementos que se repetem nos dois conjuntos uma única vez.
Em teoria dos conjuntos, a interseção ou intersecção (AO 1990: interseção ou intersecção), é um conjunto de elementos que, simultaneamente, pertencem a dois ou mais conjuntos, representado por ∩.
Se a intersecção entre os conjuntos A e B formam um conjunto não vazio, indica que eles possuem elementos em comum, dessa forma a probabilidade da união desses dois eventos pode ser definida da seguinte forma A U B = A+B – (A ∩ B), então: p(A U B) = p(A) + p(B) – p(A ∩ B)
O método mais rápido para calcular subconjuntos é usando 2 n ,em que n é a quantidade de elementos que tem o conjunto dado. No caso acima, o conjunto dado tem 3 elementos, logo, substituímos o n por 3. 23 = 8 subconjuntos.
Para resolver esse tipo de questão, vamos começar desenhando um diagrama de Venn. Cada marca de refrigerante será representada por um círculo. Vamos começar colocando o número de estudantes que consomem as três marcas simultaneamente, ou seja, a intersecção da marca A,B e C.
1.
Operações com conjuntos
Uma função é uma relação entre dois conjuntos domínio e contradomínio em que, para cada elemento do domínio, existirá um único correspondente no contradomínio, esse correspondente é conhecido como imagem.