O estudo dos sinais possibilita definir se uma função de 1º grau é crescente ou decrescente. ... No caso de uma função do 1º grau, sua lei de formação possui a seguinte característica: y = ax + b ou f(x) = ax + b, em que os coeficientes a e b pertencem aos números reais e diferem de zero.
Estudar o sinal de uma função é determinar para quais valores reais de x a função é positiva, negativa ou nula. A melhor maneira de analisar o sinal de uma função é pelo gráfico, pois nos permite uma avaliação mais ampla da situação. Vamos analisar os gráficos das funções a seguir, de acordo com a sua lei de formação.
Portanto, no intervalo em que a função estiver acima do eixo x, ela é positiva; quando estiver abaixo do eixo x, é negativa. Nos pontos em que o gráfico intercepta o eixo x, a função é nula; como já dissemos antes, esses pontos são chamados de raízes da função.
Para achar a e b na função afim devemos encontrar pelo menos dois pontos (x,y) que correspondem as condições de contorno do modelo. Em seguida, é preciso substituir os valores na função e montar um sistema de equações que, ao ser resolvido, mostrará os valores de a e b da função afim.