O comportamento dos gases reais se aproxima do previsto para o modelo ideal quando em altas temperaturas e baixas pressões. A pressão exercida pelo gás é resultado do bombardeio que as moléculas, em seu movimento caótico, determinam sobre as paredes do recipiente.
O gás perfeito ou ideal é um gás idealizado, apresenta características particulares e obedece à lei geral dos gases e à equação de Clapeyron. Não há interação gravitacional entre as moléculas; ... O volume próprio de cada molécula é completamente insignificante quando comparado com o volume total do gás.
Os gases reais apresentam comportamento semelhante aos gases ideais quando se encontram submetidos a baixas pressões e altas temperaturas. Sob a condição de mesma temperatura e quantidade de matéria, o gás real apresenta menor pressão que o gás ideal.
Os gases reais são todos os gases existentes na natureza, salvo quando estão em condições de pressão e de temperatura particulares e nestes casos são considerados aproximadamente, para efeitos apenas de cálculos facilitados, como gases perfeitos ou ideais.
Resposta: Um gás ideal ou gás perfeito pode ser compreendido como um conjunto de moléculas ou átomos que estão em movimento constante e aleatório, cujas velocidades médias estão relacionadas com a temperatura - quanto maior a temperatura do sistema, maior a velocidade média das moléculas.
Dentre os gases nobres que fazem parte da composição do ar podemos citar: argônio (Ar), neônio (Ne), radônio (Rn), hélio (He), criptônio (Kr) e xenônio (Xe), sendo que eles compõem cerca de 0,93% do ar atmosférico.
A equação de Clapeyron é uma expressão matemática que relaciona grandezas como pressão (P), volume (V), temperatura (T) e o número de partículas (n) que compõem um gás perfeito ou ideal.
A equação de estado dos gases, ou equação de Clapeyron, descreve o comportamento de um gás ideal e faz a seguinte relação de grandezas: PV = nRT. Não pare agora... Tem mais depois da publicidade ;)
A equação de Clapeyron pode ser entendida como uma síntese dessas três leis, relacionando pressão, temperatura e volume. Em uma transformação isotérmica, pressão e volume são inversamente proporcionais e em uma transformação isométrica, pressão e temperatura são diretamente proporcionais.
O professor pode pedir para os alunos calcularem a massa molar (M = m/n) do gás butano, com o auxílio da equação de estado dos gases (PV = nRT). Considere o gás butano como um gás ideal, a pressão atmosférica (P) igual a 1 atm e o valor da constante universal dos gases (R) igual a 0,082 atm.
Através das três Transformações gasosas (isotérmica, isobárica, isovolumétrica) representadas respectivamente pelas equações: PV = K, V/T = K, P/T = K é que se chegou à Equação geral dos gases: Observe que a equação aborda as três variáveis de estado (P, V e T).
A temperatura dos gases e dos corpos costuma ser medida por meio de um termômetro, que possui uma graduação denominada escala termométrica. A unidade adotada pelo Sistema Internacional de Unidades e pela IUPAC (União Internacional de Química Pura e Aplicada) é o kelvin, simbolizado pela letra K.
Considera-se a temperatura como variável de estado dos gases porque ela influencia diretamente suas propriedades e comportamento. A temperatura é definida como a medida do nível de energia térmica de um material, ou seja, é a medida do nível ou grau de agitação das partículas constituintes (átomos ou moléculas).
Resposta. A lei de Boyle-Mariotte afirma que à temperatura constante para uma quantidade fixa de massa, a pressão absoluta e o volume de um gás são inversamente proporcionais. A lei também pode ser definida de uma maneira um pouco diferente: que o produto entre volume e pressão é sempre constante.
Definição. A lei pode ser definida da seguinte forma: Para uma quantidade fixa de um gás ideal mantido a uma temperatura constante, a pressão P e o volume V são inversamente proporcionais (enquanto um dobra, o outro fica a metade).
Influência sobre a Temperatura Assim, quanto maior é a temperatura, menor é a pressão; e quanto maior é a pressão, menor é a temperatura. Isso ocorre porque, sob baixas temperaturas, o ar fica mais pesado e comprime o ar que está por baixo, elevando, assim, a pressão atmosférica.
Então, quanto menor a pressão atmosférica, menor será a pressão de vapor necessária (e menor a temperatura necessária para a ebulição, já que a pressão de vapor aumenta com a temperatura). ... Assim, resumindo, quanto menor a pressão, menor o ponto de ebulição.