Resposta. É possível encontrar um sistema linear com 3 incógnitas e 4 equações que possua uma única solução. todas as equações são satisfeitas para x=2, y=3 e z=1. Neste exemplo, o sistema é possível e determinado.
Dado o sistema linear , para resolvê-lo podemos utilizar da regra de Cramer, pois ele possui 3 equações e 3 incógnitas, ou seja, o número de incógnitas é igual ao número de equações. Devemos encontrar a matriz incompleta desse sistema linear que será chamada de A.
Um sistema de equações pode ser formado por várias incógnitas, mas somente será resolvido se o número de termos desconhecidos for igual ao número de equações do sistema. Os sistemas com três variáveis podem ser resolvidos através dos processos já conhecidos e estudados, substituição ou adição.
A equação do primeiro grau com uma incógnita é formada por uma relação de igualdade entre números conhecidos e desconhecidos, chamados de incógnitas. ... Geralmente, os números desconhecidos são representados por letras e, na maioria dos casos, essa letra é x.
Uma equação é uma sentença matemática que possui uma igualdade e, pelo menos, uma incógnita, ou seja, quando temos o envolvimento de uma expressão algébrica e uma igualdade.
A equação do 2º grau é classificada como completa quando todos os coeficientes são diferentes de 0, ou seja, a ≠ 0, b ≠ 0 e c ≠ 0. A equação do 2º grau é classificada como incompleta quando o valor dos coeficientes b ou c são iguais a 0, isto é, b = 0 ou c = 0.
Toda equação do segundo grau pode ser escrita na forma ax2 + bx + c = 0. Desse modo, o coeficiente a é o número que multiplica x2. O coeficiente b é o número que multiplica x e o coeficiente c é um número real.