6 minutos = 6 x 60s = 360 segundos. 360/11 é aproximadamente 32 segundos. Assim, o ângulo formado pelos ponteiros será 180º às 4h 54min 32s aproximadamente.
Uma volta completa do ponteiro grande (360 graus) corresponde ao movimento de 1/12 do ponteiro pequeno (30 graus).
Se o ponteiro das horas estivesse sobre o 10, o menor ângulo formado pelos dois ponteiros seria 120º. Logo, se o ponteiro das horas descreve um ângulo de 5º em 10 minutos, o menor ângulo formado pelos ponteiros de um relógio às 10h10min é 115º.
Na realidade os ponteiros formam dois ângulos, um convexo (neste caso o ângulo obtuso referido) e um côncavo (o ângulo maior que vai do 6 até ao ponteiro das horas a seguir ao número 2).
Resposta. 7 × 30º = 210º (é o maior ângulo, pois o outro é igual a 360º - 210º = 150º). 2 × 30º = 60º (é o menor ângulo, o maior é igual a 360º - 60º = 300º).
Então , para a letra a : 14 hs 45min ===> um dos ponteiros estará no número 2 e o outro ponteiro estará no nº 9. Daí então , do nº 2 até o nº 9 , a diferença é 7 e como cada divisão corresponde a 30 graus, 7 * 30 = 210 graus. Este é o maior ângulo formado nesta circunferência.
Se cada ponteiro for um grau, você tem 60 graus, mas na circunferência são 360, daí pra tornar compatível você divide os 360/60, com isso você sabe que a cada três graus na circunferência você tem um no relógio.
E, para saber o menor, basta subtrair o ângulo encontrado de 360º (note que a circunferência de um relógio tem 360º). E, claro, se o ângulo encontrado for menor que 180º, então ele já será o menor ângulo.
Resposta. Ao todo o circulo tem 360 graus.
Se uma volta completa equivale a 360º, então cada hora, corresponderá a 1/12 de 360º ou seja, 30º. Assim, às 3h, o ponteiro dos minutos estará no 12 e o ponteiro das horas estará no 3. Observe que o menor ângulo entre esses ponteiros, correspondde a três doze avos de 360º ou seja, 90º e este é o menor ângulo formado.
03 Qual o ângulo formado pelos ponteiros de um relógio que está marcando 10h18? 120⁰
Verificado por especialistas. Um relógio tem ao todo 12 divisões. Uma volta completa são 360°. O menor ângulo formado quando for 9h 30 minutos são 1/4 de hora, ou 3 horas.
Explicação passo-a-passo: Contando de 6 até 10, o ponteiro das horas terá percorrido 120°, com mais 15° da metade entre 10 e 11, temos ao todo 135°, que é o menor ângulo formado entre os ponteiros das horas e dos minutos.
β = 165º