Como V = (3, 4) e F = (3, 2), a reta focal é l : x = 3 e, nessa reta, F está abaixo de V e, portanto, abaixo da diretriz L. Logo, a equação da parábola é da forma P : (x − 3)2 = −4p(y − 4). Temos que p = d(V, F) = d((3, 4),(3, 2)) = 2. Logo a diretriz é L : y = 6 e P : (x − 3)2 = −8(y − 4).
Resposta. Resposta: y= -7/8.
Resposta: 1-Você observou que para essa atividade devemos tomar como: (x-xv)²=4c(y-yv) e y = yv - c. Logo a alternativa correta é a letra c, F(1,0).
O comprimento do eixo maior é igual a 2a, então, a elipse é a curva formada por todos os pontos Pn em que a soma da distância do ponto até o primeiro foco (dPnF1) com a distância do ponto até o segundo foco (dPnF2) é sempre constante e igual a 2a. Não pare agora...
Como obter a equação reduzida da elipse: Para o estudo que vamos fazer consideremos que a elipse tem os focos sobre o eixo dos xx e é centrada na origem, ou seja, no ponto (0,0) ....
A equação reduzida da reta é y = mx + n, em que x e y são, respectivamente, a variável independente e a variável dependente; m é o coeficiente angular, e n é o coeficiente linear.
Equação reduzida da circunferência A dedução da equação da circunferência segue a definição, o lugar geométrico dos pontos (x,y) equidistantes do centro C(xc, yc da medida R. Então: (x - xc)2 + (y – yc)2 = R2 → esta é a chamada equação reduzida da circunferência.
Como se obtém a equação reduzida da parábola: Vamos obter a equação da parábola em que o foco está sobre o eixo dos yy, o seu vértice é (0,0) e a directriz é paralela ao eixo dos xx....
Esse ponto de retorno da parábola, mais conhecido como vértice da parábola, pode ser calculado com base nas expressões matemáticas envolvendo os coeficientes da função do 2º grau dada pela lei de formação y = ax² + bx + c.