Para determinar a inversa de uma matriz, basta multiplicar a matriz dada por uma matriz genérica de termos a11, b12, c21, d22, dada a igualdade a uma matriz identidade.
A matriz inversa ou matriz invertível é um tipo de matriz quadrada, ou seja, que possui o mesmo número de linhas (m) e colunas (n). Ela ocorre quando o produto de duas matrizes resulta numa matriz identidade de mesma ordem (mesmo número de linhas e colunas).
Uma matriz só possuirá inversa se o seu determinante for diferente de zero. Caso o determinante det(B) seja igual a zero, a matriz não possui inversa. A matriz transposta da matriz inversa é igual à matriz inversa da matriz transposta. A inversa de uma matriz identidade é sempre igual a ela mesma.
Como a imagem da função f é um subconjunto próprio do seu contradomínio esta função não é sobrejetiva. Dizemos que uma função é bijetiva, bijetora, biunívoca ou um a um quando ela é ao mesmo tempo injetiva (injetora) e sobrejetiva (sobrejetora).
Resposta. A função é injetora e sobrejetora./span>
Segundo a imagem anterior, o gráfico da esquerda representa uma função sobrejetora, pois todos os valores do contradomínio estão relacionados com algum elemento do domínio.
Uma função é uma regra que relaciona cada elemento de um conjunto A a um único elemento de um conjunto B. Nessa definição, o conjunto A é chamado de domínio, o conjunto B é o contradomínio, e existe ainda um subconjunto do conjunto B chamado imagem. ... É por isso que o conjunto A é chamado de domínio.
O domínio é o conjunto dos valores possíveis das abscissas (x), ou seja, a região do universo em que a função pode ser definida. A imagem é o conjunto dos valores das ordenadas (y) resultantes da aplicação da função f(x), ou seja, da lei de associação mencionada.