Dizemos que uma função f(x) tem um limite A quando x → a (→: tende), isto é, , se, tendendo x para o seu limite, de qualquer maneira, sem atingir o valor a, o módulo de f(x) – A se torna e permanece menor que qualquer valor positivo, predeterminado, por menor que seja.
Diz-se que a função f é contínua no ponto a se e só se existir o limite de f quando x tende para a e o valor desse limite coincide com o valor da função no ponto a. Nota: Referiu-se que o ponto a pertence ao domínio da função, logo não faz sentido falar em continuidade num ponto que não pertence ao domínio da função.
Vamos determinar o limite da função f(x) = x² – 5x + 3, quando x tende a 4. Nesse caso devemos aplicar a seguinte regra: o limite das somas é a soma dos limites. Portanto, devemos determinar o limite de cada monômio e depois realizar a soma entre eles. Calcular o limite da função , quando x tende a –2.
significa que x assume valores superiores a qualquer número real e x (x tende para menos infinitos), da mesma forma, indica que x assume valores menores que qualquer número real. Exemplo: a) , ou seja, à medida que x aumenta, y tende para zero e o limite é zero.
A Regra de l'Hôpital é utilizada para levantar as indeterminações por meio de derivadas. Representaremos por u' = f'(x) e v' = g'(x) as derivadas das funções u = f(x) e v = g(x).