Raiz exata e não exata Ou seja, uma raiz é exata quando o resultado da operação não for um decimal infinito não periódico. Por outro lado, para que uma raiz seja exata, é necessário calcular a raiz a fim de demonstrar que o radical não é irracional. Dessa forma, se obtêm uma raiz que é exata.
O que é uma raiz exata? A raiz será exata quando o seu resultado não for um número decimal infinito e não periódico, ou seja, irracional.
2.
Aplicação da fórmula: delta negativo. Como delta é menor que zero, a equação não terá raízes reais, pois não existe raiz quadrada de número negativo.
∆ < 0, a equação não possui raízes reais. A resolução de uma equação do 2º grau depende do valor de delta e de uma expressão matemática associada ao indiano Bháskara. Essa expressão consiste num método eficiente de resolução desse modelo de equação, com base nos coeficientes numéricos.
Caso o valor do discriminante seja maior que zero, a equação terá duas raízes reais e diferentes. O discriminante possuindo valor menor que zero, indica que a equação não possui raízes reais. Nas situações em que o discriminante assume valor igual a zero, a equação possui apenas uma raiz real.
Isso dependerá do valor do discriminante Δ. 1º caso → Δ > 0: A função possui duas raízes reais e distintas, isto é, diferentes. ... Nesse caso, dizemos que a função possui uma única raiz. 3º caso → Δ < 0: A função não possui raízes reais.
Dada a função f(x) = ax² + bx + c, podemos determinar sua raiz considerando f(x) = 0, dessa forma obtemos a equação do 2º grau ax² + bx + c = 0, que pode ser resolvida pelo método resolutivo de Bháskara. O propósito de resolver uma equação do 2º grau é calcular os possíveis valores de x, que satisfazem a equação.
Para determinarmos o zero ou a raiz de uma função basta considerarmos f(x) = 0 ou y = 0. Raiz ou zero da função é o instante em que a reta corta o eixo x. A raiz da função é igual a 2. Seja f uma função real definida pela lei de formação f(x) = 2x + 1.
Designa-se por zero de uma função todo o valor da variável independente x que tem por imagem o valor zero. Graficamente, o zero de uma função é todo o valor das abcissas dos pontos de interseção do gráfico de com o eixo Ox. ...
Logo, o zero da função é dado pelo valor de x que faz com que a função assuma o valor zero. Encontrar este valor de x é muito fácil, pois basta resolver a equação do 1º grau.
b)Para determinar o zero da função basta considerar y igual a zero e desenvolver a equação resultante. ... Resposta: A raiz da função y=2x-1 é 1/2.
Na construção de um gráfico de uma função do 1º grau basta indicar apenas dois valores pra x, pois o gráfico é uma reta e uma reta é formada por, no mínimo, 2 pontos. Apenas um ponto corta o eixo x, e esse ponto é a raiz da função. Apenas um ponto corta o eixo y, esse ponto é o valor de b.
A função afim, também chamada de função do 1º grau, é uma função f : ℝ→ℝ, definida como f(x) = ax + b, sendo a e b números reais. As funções f(x) = x + 5, g(x) = 3√3x - 8 e h(x) = 1/2 x são exemplos de funções afim.
Para achar a e b na função afim devemos encontrar pelo menos dois pontos (x,y) que correspondem as condições de contorno do modelo. Em seguida, é preciso substituir os valores na função e montar um sistema de equações que, ao ser resolvido, mostrará os valores de a e b da função afim.