As coordenadas do vértice da parábola podem ser obtidas por meio de fórmulas que envolvem os coeficientes da função do segundo grau relacionados a ela. Uma função do segundo grau é aquela que pode ser escrita na forma f(x) = ax2 + bx + c.
O gráfico da função de 2º grau é representado pela parábola, que pode ter sua concavidade voltada para cima ou para baixo. Uma função do 2º grau é definida pela seguinte lei de formação f(x) = ax² + bx + c ou y = ax² + bx + c, em que a, b e c são números reais e a ≠ 0.
Essa direção é determinada pelo valor do coeficiente a dessa função: Se a > 0, a concavidade da parábola é voltada para cima. Se a < 0, a concavidade da parábola é voltada para baixo.
Quando o coeficiente “a” de uma função do segundo grau, na forma f(x) = ax2 + bx + c, é maior que zero, a concavidade da parábola é voltada para cima e, quando esse coeficiente é menor que zero, ela é voltada para baixo.
- Se o termo "a" tiver sinal de MAIS, então o gráfico da equação do 2º grau (parábola) terá a concavidade voltada pra cima (ponto de mínimo). - Se o termo "a" tiver sinal de MENOS, então o gráfico da equação do 2º grau (parábola) terá a concavidade voltada pra baixo (ponto de máximo). É isso aí. Deu pra entender bem?
Por outras palavras, zero de uma função é todo o valor de x, pertencente ao domínio dessa função, tal que = 0. Graficamente, o zero de uma função é todo o valor das abcissas dos pontos de interseção do gráfico de com o eixo Ox. x = 11 não é zero da função em virtude de esse valor não pertencer ao domínio de .
Logo, o zero da função é dado pelo valor de x que faz com que a função assuma o valor zero. ... Portanto, quando se encontra a raiz de uma função do 1º grau, ou o zero de uma função do 1º grau, determina-se em qual ponto a reta estará cortando o eixo x. Encontre o zero da seguinte função: f(x) = 2x-4.
Os dois zero da função f(x) são igual (-2). E os zero da função g(x) são (-1) e 3. Esse número são as raízes das funções por que são exatamente os pontos em que cada parábola das funções cruzam o eixo y do gráfico, com o valor de x igual a zero.
A função crescente é aquela em que y aumenta toda vez que x é aumentado. A função decrescente é aquela em que y diminui toda vez que x é aumentado.
Esse tipo de função pode ser classificada de acordo com o valor do coeficiente a, se a > 0, a função é crescente, caso a < 0, a função se torna decrescente.
A posição da reta no plano depende do valor do coeficiente angular a, caso ele seja positivo (a > 0), a reta é crescente; e se for negativo (a < 0), a reta é decrescente. O coeficiente representado por b é denominado linear e indica em que ponto do eixo y (ordenada) a reta passa.