5x2 – 9x – 8 + 3x2 –10x +6 → reduzir os termos semelhantes. Se subtrairmos 2x³ – 5x² – x + 21 e 2x³ + x² – 2x + 5, teremos: (2x³ – 5x² – x + 21) – (2x³ + x² – 2x + 5) → eliminando os parênteses através do jogo de sinais. 2x³ – 5x² – x + 21 – 2x³ – x² + 2x – 5 → redução de termos semelhantes.
Na divisão de monômios devemos dividir coeficiente por coeficiente e parte literal por parte literal. Ao dividir partes literais iguais, aplique a divisão de potências de bases iguais: subtrair os expoentes e repetir a base.
Os polinômios são formados por termos. A única operação entre os elementos de um termo é a multiplicação. Quando um polinômio possui apenas um termo, ele é chamado de monômio. Os chamados binômios são polinômios que possuem somente dois monômios (dois termos), separados por uma operação de soma ou subtração.
O grau de um monômio é a soma dos expoentes da sua parte literal; 9x5 possui apenas um expoente, então o monômio é do 5º grau. 8x2 y4 possui dois expoentes, então devemos somá-los 2 + 4 = 6, portanto esse polinômio é de 6º grau.
Resposta: O 25xy^3, pois têm grau 3.
Monômio ou termo algébrico é toda expressão algébrica determinada por apenas um número real, uma variável ou pelo produto de números e variáveis....Na multiplicação de monômios, multiplicamos entre si os coeficientes, assim como, a parte literal.
Por exemplo, 4m - 5m + 6m é um trinômio, pois tem três termos.
Polinômios não podem conter divisão por uma variável. Por exemplo, 2y2+7x/4 é um polinômio, porque 4 não é uma variável. No entanto, 2y2 + 7x / (1 + x) não é um polinômio, pois contém divisão por uma variável.