O 4º termo de um P.G é 1/250 e o 1º termo é 4. Qual é o 2º termo dessa P.G?
O 4º termo de um P.G é 1/250 e o 1º termo é 4. Qual é o 2º termo dessa P.G? Essa é a pergunta que vamos responder e mostrar uma maneira simples de se lembrar dessa informação. Portanto, é essencial você conferir a matéria completamente.
O 4º termo de um P.G é 1/250 e o 1º termo é 4. Qual é o 2º termo dessa P.G?
O segundo termo dessa P.G. é 2/5. Primeiramente, vamos relembrar da fórmula do termo geral de uma progressão geométrica . O termo geral de uma progressão geométrica é definido por aₙ = a₁.qⁿ⁻¹, sendo: a₁ = primeiro termo q = razão n = quantidade de termos. De acordo com o enunciado, o primeiro termo da progressão geométrica é 4. Logo, a₁ = 4. Além disso, temos que o quarto termo é igual a 1/250, ou seja: a₄ = a₁.q⁴⁻¹ 1/250 = a₁.q³. Substituindo o valor do primeiro termo , obtemos o valor da razão da progressão geométrica : 1/250 = 4.q³ q³ = 1/1000 q = 1/10. Como a razão da progressão geométrica é igual a 1/10, podemos afirmar que o segundo termo é igual a: a₂ = a₁.q²⁻¹ a₂ = 4.1/10 a₂ = 4/10 a₂ = 2/5. Para mais informações sobre progressão geométrica : 17887775