EQST

Um valor de x na equação log5(x – 3 )( x + 1 ) = 1, é?

Um valor de x na equação log5(x – 3 )( x + 1 ) = 1, é? Essa é a pergunta que vamos responder e mostrar uma maneira simples de se lembrar dessa informação. Portanto, é essencial você conferir a matéria completamente.

Um valor de x na equação log5(x – 3 )( x + 1 ) = 1, é?


log₅ (x – 3)(x + 1) = 1 ⇒ Base elevada ao logaritmo é igual ao logaritmando ⇒ 5¹ = (x – 3)(x + 1) ⇒ 5 = x² + x – 3x – 3 ⇒ x² – 2x – 3 = 5 ⇒ x² – 2x – 3 – 5 = 0 ⇒ x² – 2x – 8 = 0 a = 1 b = – 2 c = – 8 S = -b/a ⇒ -(-2)/1 ⇒ 2 P = c/a ⇒ -8/1 ⇒ – 8 Raízes: 2 números que quando somados dão 2 e quando multiplicados dão – 8 x’ = – 2 x” = 4