Por meio da fatoração, o MMC de dois ou mais números é determinado pela multiplicação dos fatores. Já o MDC é obtido pela multiplicação dos números que os dividem ao mesmo tempo.
O máximo divisor comum, ou MDC, de dois ou mais números inteiros é o maior divisor inteiro comum a todos eles. Por exemplo, o m.d.c. de 16 e 36 é o 4, e denotamos isso por MDC 16, 36 = 8. Já o MDC de 30, 54 e 72 é o 6, o que é denotado por MDC 30, 54, 72 = 6.
O mínimo múltiplo comum (MMC) entre números inteiros é o menor número, também inteiro, que é múltiplo de todos esses números ao mesmo tempo. Por exemplo, o MMC entre 2 e 12 é 12, pois os múltiplos de 2 são 2, 4, 6, 8, 10, 12… e os de 12 são: 12, 24, …
Resolução – Exemplo 2:
São relações de igualdade entre duas expressões algébricas (aquelas que contêm letras e números) que apresentam frações em algum dos seus membros, como em 20/x + 61/4x = 17. A incógnita (o valor a ser descoberto) pode aparecer tanto no numerador quanto no denominador.
Para determinar o grau de uma equação polinomial, basta encontrar a maior potência cujo coeficiente seja diferente de zero. Portanto, as equações dos itens anteriores são, respetivamente: a) A equação é do quarto grau: 3x4 + 4x2 – 1 = 0. b) A equação é do segundo grau: 5x2 – 3 = 0.
Uma equação do 3º grau é toda equação do tipo ax3+bx2+cx+d=0 a x 3 + b x 2 + c x + d = 0 onde a,b,c a , b , c e d são números reais chamados de coeficientes da equação. Resolver uma equação do 3º grau significa encontrar suas raízes (ou zeros), os quais são os valores de x que tornam a igualdade verdadeira.
d)como foi descrito anteriormente, uma equação polinomial de grau 3 pode ser escrita da seguinte maneira: x³+ b x² + c x+ d = 0.