Já no caso das equações completas, é necessário utilizar uma fórmula matemática: a fórmula de Bhaskara (lê-se báscara).
Equação biquadrada é uma equação de quarto grau, que para achar os valores de suas raízes é preciso transformá-la em uma equação de 2º grau. Essa equação é escrita da seguinte forma geral: ax4 + bx2 + c = 0. ... Para resolver (encontrarmos as sua raízes) é preciso transformá-las em uma equação do segundo grau.
Um dos métodos de resolução é o que usa uma equação cúbica auxiliar e que descrevo de seguida. O outro — que nem sempre funciona — é a factorização do 1.º membro da equação em dois factores do segundo grau.
Para determinar o grau de uma equação polinomial, basta encontrar a maior potência cujo coeficiente seja diferente de zero. Portanto, as equações dos itens anteriores são, respetivamente: a) A equação é do quarto grau: 3x4 + 4x2 – 1 = 0.
As equações biquadradas são aquelas que possuem grau 4, ou equações do 4º grau, cujos expoentes são pares, como constataremos logo mais. Portanto, uma condição indispensável é não existir expoentes ímpares na equação a ser resolvida.
Para montar o dispositivo de Briot-Ruffini, colocamos a raiz de Q(x) à esquerda e os coeficientes de P(x) à direita, além de reescrever o primeiro coeficiente na linha de baixo. Esse número será multiplicado por u e somado com o segundo coeficiente.
O ato de fatorar um número pode parecer complicado, mas com a ajuda dos números primos, é possível realizar o processo de uma maneira extremamente simples. Para isso, basta dividir o número pelo seu menor divisor primo. Na sequência, divide-se o quociente que foi obtido pelo mesmo número primo.