Cálculo 1 - Função Injetora. Uma função f(x) é injetora (ou um a um) se, para diferentes valores x A, no domínio de f, sempre corresponderem valores diferentes de y na imagem.
A função injetora, também chamada de injetiva, é um tipo de função que apresenta elementos correspondentes em outra. Assim, dada uma função f (f: A → B), todos os elementos da primeira têm como imagem elementos distintos de B. No entanto, não há dois elementos distintos de A com a mesma imagem de B.
Uma função é sobrejetora quando seu contradomínio e imagem são o mesmo conjunto. Em outras palavras, uma função é sobrejetora quando todos os elementos do contradomínio estão relacionados a, pelo menos, um elemento do domínio.
Resposta: Letra A e letra C. Explicação passo-a-passo: Vejamos o conjunto A da letra a), nela o número representado por -2 NÃO tem uma relação com qualquer número do conjunto B, logo, não é uma função.
Diagramas b e c. Para o diagrama representar uma função de A em B, temos que: Cada elemento de A deve estar ligado a somente um elemento de B; Não pode sobrar elementos de A.
Definimos função como a relação entre dois ou mais conjuntos, estabelecida por uma lei de formação, isto é, uma regra geral. Essa relação também pode ser representada com a utilização de diagramas de flechas, relacionando cada elemento do conjunto A com os elementos do conjunto B. ...
Função é uma fórmula automática, ou seja, uma operação pré-definidas que opera sobre os valores das planilhas. As funções do Excel diferem das fórmulas comuns na medida em que o usuário fornece os valores (parâmetros), mas não os operadores. Onde: SOMA é o nome da função de soma. ...
Para indicar que entre dois conjuntos A e B há uma função utilizaremos a notação:
As funções nos permitem expressar relações entre grandezas e modelar situações problema. Com a ideia de função, podemos construir modelos para descrever muitos fenômenos e problemas reais, estabelecendo conexões com diversas áreas, como Administração e Ciências Sociais e Naturais.
Em matemática, define-se como função real qualquer função cujo contradomínio está contido no conjunto dos números reais.
Exemplo: A função real f(x)=x2 é par, pois f(−x)=x2=f(x). Veja o gráfico de f. Outra função par é g(x)=cos(x) pois g(−x)=cos(−x)=cos(x)=g(x).
O domínio é o conjunto dos valores possíveis das abscissas (x), ou seja, a região do universo em que a função pode ser definida. A imagem é o conjunto dos valores das ordenadas (y) resultantes da aplicação da função f(x), ou seja, da lei de associação mencionada.
O conjunto imagem da função é um subconjunto do contradomínio formado por todos os elementos correspondentes de algum elemento do domínio. Exemplo 1: Encontre a imagem da função f(x) = x² f: R → R: f(1) = 1² = 1, a imagem da função quando x é igual a 1 é 1.
Para construir o gráfico de uma função, devemos atribuir valores para a variável que representa um valor do domínio da função e com isso encontraremos o valor que representa a imagem para aquele elemento do domínio. Exemplo: Seja a função f: A → R, tal que f(x) = 2x – 2.