Função injetora: uma função é injetora se os elementos distintos do domínio tiverem imagens distintas. Por exemplo, dada a função f : A→B, tal que f(x) = 3x. Função bijetora: uma função é bijetora se ela é injetora e sobrejetora. Por exemplo, a função f : A→B, tal que f(x) = 5x + 4.
Resposta. A função é injetora e sobrejetora.
Podemos representar graficamente uma função usando vários tipos de gráficos: gráficos de barras, correspondência ou relação entre conjuntos, gráfico cartesiano. ... Os gráficos cartesianos permitem visualizar "a forma" geométrica de uma função e as suas principais características.
Se uma função é injetora então não há elementos do conjunto imagem que sejam imagens de mais de um elemento do domínio. Então, se traçarmos linhas paralelas ao eixo x do gráfico da função e estas interceptarem a função em mais de um ponto em relação ao eixo y então dizemos que esta função não é injetiva.
Basta ligar os pontos através de uma reta para determinar o gráfico da função y = x + 1.
Uma vez que tivermos uma fórmula, devemos impor as condições do gráfico, substituindo o x e o y=f(x) para cada ponto que pertence a função. Isso nos dará um sistema, possivelmente linear, que permitirá determinar os parâmetros e encontrar a expressão da função.
O gráfico da função de 2º grau é representado pela parábola, que pode ter sua concavidade voltada para cima ou para baixo. Uma função do 2º grau é definida pela seguinte lei de formação f(x) = ax² + bx + c ou y = ax² + bx + c, em que a, b e c são números reais e a ≠ 0.
A função que representa o quadrado de um número é dada através da função f(x) = x² ou y = x². É considerada uma função que possui domínio e imagem nos reais. A função a seguir representa o sucessor do dobro de um número e é dada pela seguinte expressão: y = 2x + 1 ou f(x) = 2x + 1.
Como citado anteriormente, a principal função dos números é a de quantificar as coisas. ... Para isso, são usados os números cardinais. A segunda função dos números é a de se classificar e indicar a posição de um objeto conforme uma ordem estabelecida.