Dado o sistema linear , para resolvê-lo podemos utilizar da regra de Cramer, pois ele possui 3 equações e 3 incógnitas, ou seja, o número de incógnitas é igual ao número de equações. Devemos encontrar a matriz incompleta desse sistema linear que será chamada de A.
Para resolver um sistema é necessário encontrar os valores que satisfaçam simultaneamente todas as equações. Um sistema é chamado do 1º grau, quando o maior expoente das incógnitas, que integram as equações, é igual a 1 e não existe multiplicação entre essas incógnitas.
Para escalonar um sistema adotamos o seguinte procedimento: a) Fixamos como 1ª equação uma das que possuem o coeficiente da 1ª incógnita diferente de zero. b) Utilizando as propriedades de sistemas equivalentes, anulamos todos os coeficientes da 1ª incógnita das demais equações.
Solução: Primeiro, devemos escrever a matriz que representa os coeficientes das incógnitas e obter seu determinante. Em seguida, devemos excluir a primeira coluna da matriz dos coeficientes das incógnitas e substituí-la pelos termos independentes do sistema 12, 12 e – 16, e calcular o determinante.
1º passo: calcular o determinante da matriz de coeficientes. 2º passo: calcular Dx substituindo os coeficientes da primeira coluna pelos termos independentes. 3º passo: calcular Dy substituindo os coeficientes da segunda coluna pelos termos independentes. 4º passo: calcular o valor das incógnitas pela regra de Cramer.
Discutir um sistema linear consiste em analisá-lo de forma a determinar os valores dos coeficientes das equações que fazem com que o sistema possa ser Possível e Determinado (SPD), Possível e Indeterminado (SPI) e Impossível (SI).
Qualquer sistema linear pode ser classificado quanto ao número de soluções. Lembrando que um sistema linear é o conjunto de equações lineares. Não existe nenhum par ordenado que satisfaça as equações do sistema acima, por isso o classificamos como SI. ...
Sistema Possível e Determinado (SPD): há apenas uma solução possível, o que acontece quando o determinante é diferente de zero (D ≠ 0). Sistema Possível e Indeterminado (SPI): as soluções possíveis são infinitas, o que acontece quando o determinante é igual a zero (D = 0).
Podemos classificar um sistema linear de três maneiras: SPD – Sistema possível determinado; existe apenas um conjunto solução; SPI – Sistema impossível indeterminado; existem inúmeros conjuntos solução; SI – Sistema impossível; não é possível determinar um conjunto solução.
Os sistemas lineares são classificados de acordo com a quantidade de soluções que apresenta. Com isso, podem ser classificados como: Sistema Possível e Determinado, ou SPD: quando possui apenas uma solução; ... Sistema Impossível, ou SI: quando não possui solução.
Classificando um sistema escalonado
Classificação das equações de primeiro grau. As equações de 1º grau podem ser classificadas como equivalentes, numéricas, literais, possíveis e determinadas, possíveis e indeterminadas e impossíveis.
Um sistema de equações é considerado determinado quando apresenta uma única solução, isto é, no caso de um sistema de duas equações do 1º grau com duas incógnitas, há um único par ordenado. Observe: Ao resolvermos o sistema , obtemos uma única possível solução: (4, 3).
Sistema Possível e Determinado (SPD): ao ser resolvido encontraremos uma única solução, isto é, apenas um único valor para as incógnitas. ... Sistema Possível e Indeterminado (SPI): esse tipo de sistema possui infinitas soluções, os valores de x e y assumem inúmeros valores.