A análise de variância de uma classificação (One-Way ANOVA) verifica se as médias de “k” amostras independentes (tratamentos) diferem entre si. Um segundo tipo de análise de variância, denominado de ANOVA de Dupla Classificação (Two-Way ANOVA) testa se existe diferença entre duas variáveis categóricas.
Segundo Gomes (1990), uma ANOVA, ou análise de variância, é um modelo estatístico que testa se as médias de duas ou mais populações são iguais ou diferentes, através de duas hipóteses: a hipótese nula e a alternativa (H0 e H1, respectivamente). ... Um dos modelos de ANOVA muito utilizado é o modelo de medidas repetidas.
O segundo método de comparação múltipla proposto por Fisher e usualmente chamado de teste ou procedimento de Bonferroni, consiste na realização de um teste t para cada par de médias a uma taxa de erro por comparação (TPC) de α(k2).
Para determinar se alguma das diferenças entre as medianas é estatisticamente significativa, compare o valor-p com o seu nível de significância a fim de avaliar a hipótese nula. A hipótese nula afirma que as medianas populacionais são todos iguais.
É um teste não paramétrico utilizado para comparar três ou mais populações. Ele é usado para testar a hipótese nula de que todas as populações possuem funções de distribuição iguais contra a hipótese alternativa de que ao menos duas das populações possuem funções de distribuição diferentes.
Antes de rodar uma regressão linear simples, é preciso também testar a normalidade da distribuição de erros. Em alguns tipos de teste estatístico, caso a distribuição dos dados, erros ou diferenças não seja normal, é preciso fazer algum tipo de transformação ou então usar uma versão não-paramétrica.
Para tomada de decisão a respeito da normalidade dos dados, compara-se o valor calculado de W com o valor tabelado Wn;α, obtido da Tabela Shapiro_prob. Se o valor calculado W for menor que o tabelado, rejeita-se a hipótese de normalidade ao nível α de significância.
Se o valor de p for menor ou igual ao nível de significância, você deve rejeitar a hipótese nula e concluir que os seus dados não seguem a distribuição normal. Se o valor de p for maior do que o nível de significância, você não deve rejeitar a hipótese nula.
Para amostras de dimens˜ao superior ou igual a 30 aconselha-se o teste de Kolmogorov-Smirnov com a correcç˜ao de Lilliefors; para amostras de dimens˜ao mais reduzida é mais indicado o teste de Shapiro-Wilk.
Regra de decisão: Se P-Value (P-valor) for maior que o nível de significância, os dados apresentam distribuição normal. Interpretação: Não há diferença significativa entre os tratamentos ao nível de 5% de significância. Logo, os quatro tipos de pneu apresentam, em média, o mesmo prazo de vida.
Os testes de normalidade são utilizados para verificar se a distribuição de probabilidade associada a um conjunto de dados pode ser aproximada pela distribuição normal.
Dependendo de A' 2, você vai calcular p com as seguintes equações:
Falamos que uma sequencia de dados é uma normal quando a maioria dos dados estão muito póximos da média e os dados mais diferentes da média são poucos. ... Agora dados que não seguem uma distribuição normal, são dados que não tem uma distribuição clara mais concentrada perto da média.