Progressão geométrica (PG) é uma sequência numérica em que, após o primeiro termo, os termos posteriores da sequência são construídos a partir da multiplicação de uma razão q pelo termo antecessor. Exemplo: - PG de razão 3 em que o primeiro termo é 2. Os termos da sequência são representados por (a1, a2, a3, a4, a5 …).
é uma sequência numérica em que o próximo elemento da sequência é o número anterior somando a uma constante r. Este r é chamado de razão da P.A. Para sabermos qual a razão de uma P.A. basta subtrair um elemento qualquer pelo seu antecessor.
é uma sequência de números onde a diferença entre dois termos consecutivos é sempre a mesma. Essa diferença constante é chamada de razão da P.A.. Sendo assim, a partir do segundo elemento da sequência, os números que surgem são resultantes da soma da constante com o valor do elemento anterior.
A razão é 2.
a₁ = -7. Portanto, podemos afirmar que o primeiro termo da P.A.
Verificado por especialistas. n = 24 termos.
Resposta: 24 termos. Ele quer o número de termos, ou seja, n.
(-16, -14, -12, ..., 84) é 1734. O termo geral de uma progressão aritmética é definida por aₙ = a₁ + (n - 1).
Resposta. 140 é o número de termos.