crossorigin="anonymous">
O posto ou característica de uma matriz (em inglês, "matrix rank") é o número de linhas não-nulas da matriz em causa, quando escrita na forma escalonada por linhas. Equivalentemente, corresponde ao número de linhas ou colunas linearmente independentes da matriz.
Definição. Uma matriz está na forma escalonada se o número de zeros que precede o primeiro elemento não nulo de cada linha cresce de cada linha para a seguinte abaixo dela até que restem ou não, apenas linhas nulas.
Significado de escalonado Em formato de escada; que passou a possuir forma de escada. Que foi alvo de escalonamento: matriz escalonada.
Matriz Nula é aquela em que todos os seus elementos s˜ao nulos. Matriz Linha é aquela que possui uma única linha (m = 1).
Solução: Primeiro, devemos escrever a matriz que representa os coeficientes das incógnitas e obter seu determinante. Em seguida, devemos excluir a primeira coluna da matriz dos coeficientes das incógnitas e substituí-la pelos termos independentes do sistema 12, 12 e – 16, e calcular o determinante.
Um sistema linear é homogêneo quando os coeficientes, independente de todas as suas equações lineares, são iguais a zero. Esse tipo de sistema possui pelo menos uma solução possível, pois podemos obter como resultado o terno (0, 0, 0), chamamos de solução nula ou trivial.
A solução de um sistema linear é a atribuição de valores às variáveis x1, x2, ..., xn de modo a satisfazer ambas equações. O grupo de todas as soluções possíveis é chamado de conjunto-solução.
Um sistema de equações pode ser formado por várias incógnitas, mas somente será resolvido se o número de termos desconhecidos for igual ao número de equações do sistema. Os sistemas com três variáveis podem ser resolvidos através dos processos já conhecidos e estudados, substituição ou adição.
O método da adição consiste em realizar a multiplicação de todos os termos de uma das equações, de tal modo que, ao somar-se a equação I na equação II, uma de suas incógnitas fique igual a zero. Exemplo: 1º passo: multiplicar uma das equações para que os coeficientes fiquem opostos.