O termo reduzir por linhas significa transformar uma matriz usando as transformações elementares sobre linhas. Este processo é também chamado de escalonamento de matrizes. nulo. Troque as linhas entre si de modo que esse elemento não nulo apareça na primeira linha, isto é, de modo que na nova matriz a1k1 = 0.
Definição. Uma matriz está na forma escalonada se o número de zeros que precede o primeiro elemento não nulo de cada linha cresce de cada linha para a seguinte abaixo dela até que restem ou não, apenas linhas nulas.
Uma matriz é denominada de forma escalonada ou forma escada quando o número de zeros no lado esquerdo do primeiro elemento não nulo da linha, aumenta a cada linha. Exemplo 3.
Para afirmar se uma matriz é inversível, ou seja, se é possível calcular a sua inversa, é necessário primeiro identificar o seu determinante. Caso este determinante seja diferente de zero, a matriz é inversível. Em situações em que o determinante é nulo, a matriz não pode ser considerada inversível.
A matriz inversa ou matriz invertível é um tipo de matriz quadrada, ou seja, que possui o mesmo número de linhas (m) e colunas (n). Ela ocorre quando o produto de duas matrizes resulta numa matriz identidade de mesma ordem (mesmo número de linhas e colunas).
Logo: x ≠ 6 e x ≠ 4