Os números complexos podem ser representados de três formas: a forma algébrica (z = a + bi), composta por uma parte real a e uma parte imaginária b; a forma geométrica, representada no plano complexo conhecido também como plano de Argand-Gauss; e a sua forma trigonométrica, conhecida também como forma polar.
Para que uma equação do segundo grau apresente como raízes apenas números complexos, o discriminante deve ser negativo. Dada a equação x² - 6x + 3t = 0, determine o valor de t para que a equação tenha como raízes apenas números complexos: a) t < 3.
Para que uma equação do segundo grau apresente como solução duas raízes reais e distintas, o discriminante deve ser positivo. Dada a equação x² - 4x + k = 0, para quais valores de k a equação tem duas raízes reais e distintas? a) k < 2 b) k > 2 c) k < 4 d) k > 4 5.