O desenvolvimento das teorias da probabilidade e os avanços dos cálculos probabilísticos devem ser atribuídos a vários matemáticos. Atribui-se aos algebristas italianos Pacioli, Cardano e Tartaglia (séc. XVI) as primeiras considerações matemáticas acerca dos jogos e das apostas.
A teoria da probabilidade é o ramo da Matemática que estuda experimentos ou fenômenos aleatórios e através dela é possível analisar as chances de um determinado evento ocorrer.
O lançamento de um dado e de uma moeda são considerados exemplos de experimentos aleatórios, no caso dos dados podemos ter seis resultados diferentes {1, 2, 3, 4, 5, 6} e no lançamento da moeda, dois {cara, coroa}. ...
Espaço amostral é o conjunto estabelecido por todos os possíveis resultados de um experimento. Por exemplo, no lançamento de uma moeda, o espaço amostral é dado por “cara” ou “coroa”. No lançamento de um dado, o espaço amostral é representado pelas faces enumeradas 1, 2, 3, 4, 5 e 6.
Em teoria das probabilidades, um evento é um conjunto de resultados (um subconjunto do espaço amostral) ao qual é associado um valor de probabilidade. Habitualmente, quando o espaço amostral é finito, qualquer subconjunto seu é um evento (i.
. Qualquer subconjunto de um espaço amostral é comumente chamado um evento, enquanto subconjuntos de um espaço amostral contendo apenas um único elemento são chamados de eventos elementares ou eventos atômicos. Para alguns tipos de experimentos, podem existir dois ou mais espaços amostrais possíveis plausíveis.
Um evento é um subconjunto do espaço amostral, ou seja, uma coleção de resultados possíveis, que pode ser igual ou menor do que o espaço amostral como um todo.