Dose letal (abreviatura do inglês: Lethal Dose)
Dois vectores de um plano são linearmente dependentes se e só se um for múltiplo do outro (isto é, se são colineares). O conjunto {(1,0,0),(0,1,0),(0,0,1)} é linearmente independente. O conjunto {(1,0,0),(1,1,0),(1,1,1)} é linearmente independente. com mais de três vectores é linearmente dependente.
Se os vetores v → 1 , v → 2 , … , v → k ∈ ℝ m não forem linearmente independentes, então nós dizemos que eles são linearmente dependentes (LD). são LI ou LD. ... Se esta for a única solução, então os vetores são LI. Se existir alguma outra solução que não seja a trivial, então os vetores são LD.
5.
Em outras palavras, a matriz M de mudança da base β para a base canônica é a matriz cujas colunas s˜ao as coordenadas dos vetores da base β na base canônica. Observe que a matriz de mudança da base canônica e `a base β é a matriz inversa de M. [T]e = P [T]β P−1.
Mudança de bases
As matrizes organizam os números em forma de tabela, e permitem localizar um número por meio de um par (a,b) tal como na tela do computador, guardando em cada posição a sua cor. Numa tela com 256 cores, cada pixel guarda um número entre zero e 255, dando 256 possibilidades, ou 2^8 (2 elevado a 8).
Determinante nada mais é que um número encontrado após algumas operações básicas com os valores da matriz. E esse número possui muitas propriedades úteis na hora de resolver matrizes, ou seja, resolver o sistema de equações. Facilita muito sua resolução.
Seja A uma matriz e A' uma nova matriz construída trocando-se as linhas da matriz A, então det(A') = -det(A), ou seja, ao inverter-se a posição das linhas de uma matriz, o seu determinante terá o mesmo valor, porém de sinal trocado.
DETERMINANTE DE MATRIZ 3X3