Para verificar se um número é raiz de uma equação, devemos obedecer à seguinte sequência:
Soma e Produto: Raízes da Equação do 2° Grau
1. SOMA E PRODUTO. A equação do 2º grau “ax2 + bx + c = 0” possui duas importantes relações entre as suas raízes x1 e x2 e os seus coeficientes a, b e c. Essas relações são conhecidas como Soma e Produto ou, também, como Relações de Girard.
Soma e produto é um método usado para calcular as raízes da equação do 2° grau, sendo, portanto, uma variação da fórmula de Bhaskara. Esse método estabelece duas relações entre as raízes e os coeficientes da equação.
Soma e Produto das Raízes de uma Equação do 2º grau
Para somar ou subtrair devemos identificar se os radicais são semelhantes, ou seja, se apresentam índice e radicando iguais. Para somar ou subtrair radicais semelhantes, devemos repetir o radical e somar ou subtrair seus coeficientes.
Primeiramente é necessário decompor as raízes para que elas fiquem com o mesmo radical, e em seguida é só somar os numeros que se encontram fora do radical.
A regra prática para realizar adição e subtração de radicais é a mesma, a única diferença será o operador, ou seja, a operação poderá ser de adição ou de subtração. Para somar e diminuir radicais semelhantes basta conservar o radical semelhante e realizar a adição ou subtração dos coeficientes.
Veja se há raízes quadradas com o mesmo radicando.
Determinar a raiz quadrada consiste em calcular o número que, elevado ao quadrado, gera o valor desejado. Por exemplo, a raiz quadrada do número 25 corresponde ao número 5, pois 5² é igual a 25. Em algumas situações, descobrir esse número por tentativa pode ser muito cansativo e bastante complicado.
O cálculo de raízes não exatas pode ser feito por meio da fatoração, fato garantido pelo teorema fundamental da aritmética e propriedades dos radicais. Uma das estratégias mais usadas para calcular raízes é a fatoração. Para tanto, utiliza-se o teorema fundamental da aritmética e algumas propriedades de raízes.
Quando nos depararmos com uma raiz de outra raiz, basta conservar o radicando e multiplicar os índices das raízes. A propriedade 7 afirma que, em uma raiz n-ésima de uma potência, podemos multiplicar o índice e o expoente do radicando por qualquer número desde que seja diferente de 0.
Cálculo da raiz quadrada 1º passo: Dividir seu radicando somente por números primos até obter o número 1. Como exemplo, vamos usar √400 . 2º passo: Multiplicar de dois em dois os números de mesmo valor: Obs.
Cálculo da Raiz Quadrada. A raiz quadrada (√) de um número é determinada por um número real positivo elevado ao quadrado (x2). Já na raiz cúbica, o número é elevado ao cubo (y3). Além disso, se a raiz for elevada a quarta potência (z4) é chamada de raiz quarta, e se for elevada a quinta potência (t5) é raiz quinta.
Para transformar raiz quadrada em fração, devemos elevar o radical da raiz a uma fração entre seu expoente e o índice do radical. Esta questão está relacionada com raiz quadrada. A raiz quadrada de um determinado número é um valor que, quando multiplicado por si próprio, possui como resultado o número inicial.
Resposta. numero elevado a fração vira raiz, o denominador (de cima) vira potencia e o numerador (de baixo) vira o grau da raiz, logo isso é ²√2.
A raiz de um número é calculada descobrindo qual número multiplicado por ele mesmo resultada no valor da raiz. Por exemplo, sabemos que a raiz quadrada de 25 (√25) é 5, pois 5 x 5 = 25.
Resposta. Resposta: 1-Para resolver potências com expoente fracionário e decimal, basta convertê-las em raízes. Potência fracionáriaNos estudos de potências, estudamos inúmeras propriedades acerca dos expoentes.
Para resolver potências com expoente fracionário e decimal, basta convertê-las em raízes. Não pare agora... Tem mais depois da publicidade ;) Até mesmo a resolução de potência com expoente negativo é bem simples.
Por exemplo, considere √2: Para transformar √2 em potência, repita o 2 e coloque o expoente 1/2. O expoente é 1/2, porque o numerador 1 é extraído do expoente do 2 dentro da raiz, e o denominador 2 é porque se trata de raiz quadrada. Se fosse raiz cúbica por exemplo ∛2, ficaria 2 elevado ao expoente 1/3.
Ou seja, devemos transformar cada radical em uma potência onde o expoente é uma fração, onde o radicando será a base, o expoente sob o radical será o numerador (número de cima da fração) e o índice será o denominador (número de baixo da fração).
A forma de radical é: ⁵√2 e ³√4². Esta questão está relacionada com raiz quadrada. A raiz quadrada de um determinado número é um valor que, quando multiplicado por si próprio, possui como resultado o número inicial.
Desse modo, podemos definir a potenciação de frações da seguinte maneira: Assim, caso seja necessário calcular uma potência que envolva uma fração, basta elevar separadamente numerador e denominador àquele expoente.
Quando esse expoente é uma fração, ou seja, possui numerador e denominador, devemos transformá-lo em uma raiz, isto é: Não pare agora... Tem mais depois da publicidade ;) No lado esquerdo da igualdade, temos que: a = base, n = expoente.