Existem diversas formar de achar o valor de a e b em uma funcão afim. Para achar o b, basta observar onde a reta toca no eixo y. Esse valor será o valor de b.
A lei de formação de uma função é a equação que representa a função no plano cartesiano (ou no espaço euclidiano, para três dimensões).
Uma função é uma regra que relaciona cada elemento de um conjunto a um único elemento de outro. O primeiro conjunto é chamado de domínio, e o segundo, contradomínio da função. A função determina uma relação entre os elementos de dois conjuntos.
Função é uma regra que relaciona cada elemento de um conjunto (representado pela variável x) a um único elemento de outro conjunto (representado pela variável y). Para cada valor de x, podemos determinar um valor de y, dizemos então que “y está em função de x”.
Neste caso, a função é um conjunto de operações a ser feita com um número que pode variar, representado pelo x. A função, neste exercício, é f(x)=8x−1, ou seja, a regra é "multiplicar a variável por 8 e depois subtrair 1.
Uma função f é dada por f(x) = ax + b, em que a e b são números reais. Considerando que f(–1) = 3 e f(1) = –1, determine f(3). Determinando a função de acordo com f(x) = ax + b → f(x) = –2x + 1. O valor de f(3) na equação é igual a –5.
O valor de uma função afim é o valor que a função assume para um determinado x. Para compreendermos com clareza a definição acima, vamos utilizar um exemplo. O mesmo deve ser feito no item b, ou seja, para calcular f(–2), basta substituir agora, o valor de x na função por –2.
Probabilidade de Evento Único fórmula: Probabilidade de eventos ocorrerem P(A) = n(A) / n(S). Probabilidade de eventos não ocorrerem P (A') = 1 - P(A).
Para calcular a moda de um conjunto de dados só é preciso observar os dados que aparecem com maior frequência no conjunto. A moda para esse conjunto é: Mo = 2. É o número que aparece o maior número de vezes. Neste exemplo, a moda é: Mo = 2 ou 21.
Determinamos a probabilidade de um evento acontecer, dividindo o número de eventos escolhidos pelo total de eventos do espaço amostral. Observe mais alguns exemplos: Um baralho é composto por 52 cartas divididas da seguinte forma: O baralho é enumerado com os seguintes números: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K e A.
Explicação: Qualquer alternativa que você escolher , ou você está certo ou você está errado ! ou seja 50% de chance de acertar .
18,95%