Figura 1: Estruturar a tabela de dados no Excel, ir ao menu dados e clicar em análise de dados. Figura 2: Selecionar regressão. Figura 3: Selecionar o intervalo de dados desejado para as variáveis X e para as variáveis Y. Figura 4: Selecionar o nível de confiança de 95%, plotar resíduos e plotar a probabilidade normal.
A regressão linear múltipla é uma técnica estatística responsável pela análise de situações envolvendo mais de uma variável. Esse método nos permite identificar quais são as variáveis independentes que podem explicar uma variável independente, comprovar as causas e prever os valores aproximados.
Como eu interpreto os valores-P na Análise de regressão linear? O valor-p para cada termo testa a hipótese nula de que o coeficiente é igual a zero (sem efeito). Um valor-p baixo (< 0,05) indica que você pode rejeitar a hipótese nula.
a + b x 1 = y 1 a + b x 2 = y 2 ⋮ a + b x k = y k ↭ 1 x 1 1 x 2 ⋮ ⋮ 1 x k a b = y 1 y 2 ⋮ y k ....11.2 Regressão Linear Simples.IdadeDistância (em )20590324104146049380
No excel, para instalar a extensão de análises estatísticas:
Primeiro passo: Selecione a aba dados no Excel e clique em "Análise de Dados". No menu que aparecer selecione regressão. Segundo Passo: Selecione a coluna referente a variável dependente e em seguida selecione as colunas que armazenam os dados das variáveis explanatórias. É possível padronizar a saída dos resultados.
A análise de regressão consiste na realização de uma análise estatística com o objetivo de verificar a existência de uma relação funcional entre uma variável dependente com uma ou mais variáveis independentes.
Pela análise de regressão é possível calcular o valor de uma grandeza em função de outras, ou combinações de outras. É empregada quando os dados relativos às outras grandezas são estimados mais facilmente, ou porque precedem os da primeira no tempo.
Na regressão linear simples, a relação entre duas variáveis pode ser representada por uma linha reta, criando uma relação direta de causa e efeito. Assim, será possível prever os valores de uma variável dependente com base nos resultados da variável independente, como ocorre num gráfico de uma equação de primeiro grau.
Muitas vezes uma única variável explicativa (preditora) não será capaz de explicar tudo a respeito da variável resposta. Se em vez de uma, forem incorporadas várias variáveis independentes, passa-se a ter uma análise de regressão linear múltipla. Y é a variável dependente (resposta);