Matemática. As equações do tipo ax² + bx + c = 0, onde a, b e c são coeficientes numéricos pertencentes ao conjunto dos números reais, com a ≠ 0, são denominadas equações do 2º grau. Como toda equação, elas possuem como resultado, um conjunto solução denominado raiz.
Um sistema linear é homogêneo quando os coeficientes, independente de todas as suas equações lineares, são iguais a zero. Esse tipo de sistema possui pelo menos uma solução possível, pois podemos obter como resultado o terno (0, 0, 0), chamamos de solução nula ou trivial.
Denominamos de sistema linear o conjunto de equações lineares na variável x com m equações e n variáveis. ... Sistema Possível e Determinado (SPD): ao ser resolvido encontraremos uma única solução, isto é, apenas um único valor para as incógnitas.
Assim, para obtermos um sistema possível e determinado basta termos um valor diferente de 6 para o coeficiente (m). Contudo, caso m seja igual a 6 (m = 6), teremos D = 0, portanto devemos determinar qual será a classificação desse sistema (SPI ou SI).
Os sistemas lineares são classificados como normais quando o número de equações é o mesmo que o número de incógnitas. Além disso, quando o determinante da matriz incompleta desse sistema não é igual a zero.
A solução de um sistema linear é a atribuição de valores às variáveis x1, x2, ..., xn de modo a satisfazer ambas equações. O grupo de todas as soluções possíveis é chamado de conjunto-solução.
Uma equação linear homogênea é uma equação que possui os termos independentes iguais a zero, por exemplo, 2x+5y-z = 0 é uma equação homogênea, portanto, podemos concluir que um sistema linear será considerado homogêneo se todas as suas equações tiverem os seus termos independentes iguais à zero.
São exemplos de equações lineares, exceto:
Resposta. A equação linear é aquela na qual os expoentes dos termos com maior grau são iguais a 1. Onde "a" é o coeficiente angular e "b" é o coeficiente linear. Desse modo, as equações lineares são aquelas que possuem as variáveis com maior grau igual a 1.