Uma função é uma regra que relaciona cada elemento de um conjunto A a um único elemento de um conjunto B. Nessa definição, o conjunto A é chamado de domínio, o conjunto B é o contradomínio, e existe ainda um subconjunto do conjunto B chamado imagem. ... É por isso que o conjunto A é chamado de domínio.
Função é uma regra que relaciona cada elemento de um conjunto (representado pela variável x) a um único elemento de outro conjunto (representado pela variável y). Para cada valor de x, podemos determinar um valor de y, dizemos então que “y está em função de x”.
Quando não é uma função Essa relação não é uma função pois temos que um único elemento do conjunto A se relaciona com vários elementos do conjunto B, violando assim a definição de função. ... Existem elementos em A que não se relacionam com elementos do conjunto B, violando também a definição de função.
De acordo com a definição de função apresentada anteriormente, os gráficos que representam funções são as letras: a e c. Consequentemente, os que não representam são as letras b e d, pois no item b o elemento 0 do conjunto A não se relacionou com nenhum elemento do conjunto B, contrariando a definição de função.
O estudo completo de uma função f = f(x) inclui:
Mas, é possível afirmar que as funções são particularmente favoráveis às aplicações, já que, como disse Ponte (1990), são instrumentos por excelência para estudar problemas de variação e trazem consigo, de sua origem histórica, a idéia de instrumento matemático indispensável para o estudo qualitativo de fenômenos ...
A Função Afim é um dos temas de maior relevância para o vestibulando, pois ela consegue modelar diversos problemas — tais como razão e proporção, progressões aritméticas, problemas de cinemática, entre outros.
Definimos função como a relação entre dois ou mais conjuntos, estabelecida por uma lei de formação, isto é, uma regra geral. Os elementos de um grupo devem ser relacionados com os elementos do outro grupo, através dessa lei.