Dada a função f de A em B, definida como y = f(x), já sabemos que o conjunto B é chamado contradomínio. A definição de função garante que cada elemento do domínio (conjunto A) é relacionado a um único elemento do contradomínio (conjunto B).
O domínio de uma função de A em B é sempre o próprio conjunto de partida, ou seja, D=A. Se um elemento x A estiver associado a um elemento y B, dizemos que y é a imagem de x (indica-se y=f(x) e lê-se “y é igual a f de x”).
A função quadrática, também chamada de função do segundo grau, é expressa como f(x) = ax² + bx + c ou y = ax² + bx + c, sendo que os coeficientes "a, b e c" números reais e "a" diferente de 0 (zero).
Introdução. Dizemos que uma fórmula está na forma canônica quando ela está escrita na sua forma mais simples ou que expõe algo de grande importância.
Se tivermos termos de grau maior, como por exemplo grau 3, não será uma função quadrática, e sim um função cúbica. ... b e c podem ser iguais a zero, mas se a for igual a zero, então não será quadrática, portanto, a deve ser diferente de zero, sendo positivo ou negativo, não importa.
Igualamos uma equação ao número zero quando desejamos encontrar a raiz dela, se for do 1° grau, ou as suas raízes, se for maior ou igual a uma equação do 2°grau. x = 5 -> esse valor indica a raiz dessa equação. Em outra palavras, podemos dizer que quando Y=0, teremos X=5.