Variância de uma amostra (ou coleção) de dados de tipo quantitativo é a medida que se obtém somando os quadrados dos desvios dos dados relativamente à média, e dividindo pelo número de dados menos um. Representa-se por s2. Estas duas estatísticas podem ser utilizadas para estimar o parâmetro variância populacional σ2.
Variância populacional de uma variável de tipo quantitativo, é o valor médio dos quadrados dos desvios relativamente ao valor médio, dos dados que se obtêm quando se observa essa variável sobre todos os elementos da população, que assumimos finita.
Eu diria ao candidato que assuma que numa tabela ou conjunto de valores é desvio-padrão amostral e use n-1. Quando, porém, for exercício sobre combinações de variâncias e desvios, use o populacional.
Medidas de dispersão É importante, então, conhecer outra medida, a de que diferença (dispersão) existe entre a média e os valores do conjunto. A soma dos quadrados dos desvios dividida pelo número de ocorrências é chamada de variância. E o desvio padrão será Dp = 4 (tente calculá-lo por conta própria).
O cálculo da variância populacional é obtido através da soma dos quadrados da diferença entre cada valor e a média aritmética, dividida pela quantidade de elementos observados.
Média e desvio-padrão em uma calculadora Casio fx-82 MS:
Média Essa é a média aritmética e é calculada adicionando um grupo de números e dividindo pela contagem desses números. Por exemplo, a média de 2, 3, 3, 5, 7 e 10 é 30 dividido por 6, que é 5.