Esse ponto de retorno da parábola, mais conhecido como vértice da parábola, pode ser calculado com base nas expressões matemáticas envolvendo os coeficientes da função do 2º grau dada pela lei de formação y = ax² + bx + c.
Como o vértice representa o ponto máximo ou mínimo da função do 2º grau, ele é usado para definir o conjunto imagem desta função, ou seja, os valores de y que pertencem a função. Por exemplo, para definir a imagem da função f(x) = x2 + 2 x - 3, devemos encontrar o valor do y do vértice da função.
As coordenadas do vértice da parábola podem ser obtidas por meio de fórmulas que envolvem os coeficientes da função do segundo grau relacionados a ela. Uma função do segundo grau é aquela que pode ser escrita na forma f(x) = ax2 + bx + c.
Uma vez que tivermos uma fórmula, devemos impor as condições do gráfico, substituindo o x e o y=f(x) para cada ponto que pertence a função. Isso nos dará um sistema, possivelmente linear, que permitirá determinar os parâmetros e encontrar a expressão da função.
O coeficiente a, número real que multiplica x2, pode ser usado para indicar a concavidade da parábola da seguinte maneira: Se a > 0, a concavidade da parábola é voltada para cima. Se a < 0, a concavidade da parábola é voltada para baixo. A melhor maneira de saber o que é a concavidade é observar um exemplo.
Nos gráficos de funções quadráticas f(x)= ax² + bx² + c: A representação gráfica da função de segundo grau é uma parábola. Se a > 0 (positiva), a concavidade da parábola estará voltada para cima e se a < 0 (negativa), a concavidade da parábola estará voltada para baixo.
Resposta. Resposta: 1000, 120, 450 e 54.