Divisibilidade:a matéria pode ser dividida, até certo limite, em partes menores, sem que suas propriedades se alterem. O limite será a molécula ou átomo, dependendo do tipo da propriedade que a matéria tem de se dividir em partes extremamente pequenas. Exemplo: quebre um pedaço de um giz ate reduzi-lo a pó.
Os critérios de divisibilidade nos ajudam a saber antecipadamente quando um número natural é divisível por um outro. Ser divisível significa que quando dividimos esses números, o resultado será um número natural e o resto será igual a zero.
Todo número cuja soma de seus algarismos for divisível por 3. Exemplo: 81. Como 8+1=9 e 9 é divisível por 3, então o número 81 é divisível por 3. 1725 (1+7+2+5=15) é divisível por 3.
Portanto, pelo “Crivo de Eratóstenes”, os números 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,53, 59, 61, 67, 71, 73, 79, 83, 89 e 97 são os únicos números primos menores que 100. Na imagem inicial do texto, há vários números primos entre 100 e 1000.
a) Apenas 3. Os números primos só podem ser divididos por um e ele mesmo, então só 3 é primo e pode ser dividido por três.
São considerados números primos os termos numéricos maiores que 1, divisíveis por 1 e por ele mesmo. O número 1 não é primo, sendo assim, os números primos são: 2, 3, 7, 11, 13, 17, 19, 23, 29, 31 . . .
Os números restantes são primos, então os primos de 1 até 100 são: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 e 97.
4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, ...