– Se uma grandeza diminui e a outra também diminui, serão diretamente proporcionais; – Se uma grandeza aumenta enquanto a outra diminui, serão inversamente proporcionais; – Se uma grandeza diminui enquanto a outra aumenta, serão inversamente proporcionais. 3º.
Regra de três composta com três grandezas
Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna). A seguir, devemos comparar cada grandeza com aquela onde está o x. Observe que, aumentando o número de horas de trabalho, podemos diminuir o número de caminhões. Portanto a relação é inversamente proporcional (seta para cima na 1ª coluna).
Simplificando a Regra de Três Perceba que a simplificação será sempre com números na mesma coluna da tabela. Observe, por exemplo, a tabela do exemplo anterior. Só para ilustrar, para acelerar a resolução da regra de três, poderíamos ter simplificado a segunda coluna por 5 e a terceira coluna por 2.
Regra de três simples
Sempre que utilizarmos a regra de três no intuito de determinar porcentagens, devemos relacionar a parte do todo com o valor de 100%. Obs.: Nas situações envolvendo uma porcentagem, realizamos a multiplicação cruzada por ser uma grandeza diretamente proporcional. Portanto, 95% de R$ 105,00 é igual a R$ 99,75.