Matemática. Poliedros (do latim poli — muitos — e edro — face) são figuras tridimensionais formadas pela união de polígonos regulares, na qual os ângulos poliédricos são todos congruentes. A união desses polígonos forma elementos que compõem o poliedro, são eles: vértices, arestas e faces.
Platão (350 a.C.) foi o primeiro a demonstrar que existem apenas cinco poliedros regulares: o cubo, o tetraedro o octaedro, o dodecaedro e o icosaedro. Ele e seus seguidores estudaram esses sólidos com tal intensidade, que eles se tornaram conhecidos como “poliedros de Platão”.
São classificados como sólidos de Platão o tetraedro, o hexaedro, o octaedro, o dodecaedro e o icosaedro. Todos esses cinco sólidos são poliedros regulares, ou seja, possuem arestas e faces congruentes.
Para ser um sólido platônico, o poliedro precisa ser regular e convexo. Existem apenas cinco sólidos que satisfazem essa definição. São eles: o tetraedro, o cubo ou hexaedro, o octaedro, o icosaedro e o dodecaedro.
Os corpos redondos são sólidos geométricos que não possuem faces laterais, mas em seu lugar possuem superfícies curvas. É uma característica dos corpos redondos: se colocados sobre uma superfície plana levemente inclinada, podem rolar. O cone, cilindro e esfera são exemplos de corpos redondos.
→ Propriedades específicas Como o próprio nome indica, são aquelas específicas para cada matéria, que podem ser usadas para identificar a substância ou o composto que está sendo analisado. Exemplos: densidade, pontos de fusão e ebulição e coeficiente de solubilidade.
Resposta. O ponto de fusão e de ebulição são as propriedades mais adequadas para esta verificação. Mas não totalmente conclusivas. Determinando-se a dureza e a densidade a confirmação da amostra se dará em porcentagens bem elevadas.