Podemos determinar a equação fundamental de uma reta utilizando o ângulo formado pela reta com o eixo das abscissas (x) e as coordenadas de um ponto pertencente à reta. O coeficiente angular da reta, associado à coordenada do ponto, facilita a representação da equação da reta.
Ponto médio
Matemática. O ponto médio de um segmento de reta é o ponto que separa o segmento em duas partes com medidas iguais.
Para calcular a distância entre os pontos A e B, devemos escolher pontos que possuem coordenadas quaisquer A (x1, y1) e B (x2, y2). Essas coordenadas representam a localização dos pontos A e B em um plano. A distância entre esses dois pontos é igual ao comprimento do segmento de reta na cor lilás na imagem a seguir.
A área do triângulo geralmente é calculada através do produto da medida da base do triângulo pela sua altura, e dividido por 2. O triângulo é um polígono com três lados, este lados são formados por segmentos de retas unidos em três pontos que chamamos de vértices.
Não é necessário fazer as três somas para verificar a possibilidade de um triângulo existir. Basta fazer a soma entre os dois lados menores. Se a soma entre eles for maior que o terceiro lado, então, a soma entre qualquer um deles e o terceiro lado (que é o maior) terá o mesmo resultado.
Sabemos que os elementos básicos de um triângulo são: os vértices, os lados e os ângulos, mas não são os únicos. Em um triângulo identificamos outros elementos, como mediana, bissetriz e altura. Vértices, lados e ângulos. Mediana é um segmento que divide as bases do triângulo em duas partes iguais.