A função ORDENAR ordena os conteúdos de um intervalo ou matriz. Neste exemplo, estamos a ordenar por Região, Representante de Vendas e Produto individualmente com a fórmula =ORDENAR(A2:A17), copiada para as células F2, H2 e J2.
Para nosso caso, cabe um simples e para isso vamos usar as funções maior e menor para fazer ranking no Excel.
Fechando o Editor Visual Basic, voltaremos à planilha do MS-Excel, uma vez lá, clique no Menu Inserir >> Função. Dentro da janela Inserir Função, temos a opção de selecionar a categoria. Veja que essa lista agora apresentará a opção Definida pelo usuário e na caixa abaixo,a função frete será apresentada.
Toda função é definida por uma lei de formação, no caso de uma função do 1º grau a lei de formação será a seguinte: y = ax + b, onde a e b são números reais e a ≠ 0. Esse tipo de função deve ser dos Reais para os Reais.
Para identificar se uma função afim é crescente ou decrescente, basta verificar o valor do seu coeficiente angular. Se o coeficiente angular for positivo, ou seja, a é maior que zero, a função será crescente. Ao contrário, se a for negativo, a função será decrescente.
Na construção de um gráfico de uma função do 1º grau basta indicar apenas dois valores pra x, pois o gráfico é uma reta e uma reta é formada por, no mínimo, 2 pontos. Apenas um ponto corta o eixo x, e esse ponto é a raiz da função. Apenas um ponto corta o eixo y, esse ponto é o valor de b.
Uma vez que tivermos uma fórmula, devemos impor as condições do gráfico, substituindo o x e o y=f(x) para cada ponto que pertence a função. Isso nos dará um sistema, possivelmente linear, que permitirá determinar os parâmetros e encontrar a expressão da função.
O gráfico de uma função do 1º grau é uma reta podendo ser crescente ou decrescente. Construa uma tabela com duas colunas, na primeira coloque valores de x (domínio) e na segunda os valores de f(x) (imagem da função). Marque no plano cartesiano os pares ordenados (x,y), depois trace a reta da função.
Para montar o gráfico de uma função do 1° grau, é necessário encontrar apenas dois pontos que já visualizamos no gráfico. É também importante escolher valores próximos, como números subsequentes. Além disso, é sempre bom saber os pontos em que x = 0 e y = 0 (zero da função).
A lei de formação de uma função é a equação que representa a função no plano cartesiano (ou no espaço euclidiano, para três dimensões).
Para saber se uma função é polinomial do primeiro grau, devemos observar o maior grau da variável x (termo desconhecido), que sempre deve ser igual a 1. Nessa função, o gráfico é uma reta. Além disso, ela possui: domínio x, imagem f(x) e coeficientes a e b.
Pela definição de função afim, temos que ela é determinada pela seguinte expressão f(x)=ax+b, ou seja, para determinar tal função, basta encontrarmos os coeficientes a, b. Veremos que para descobrir estes coeficientes precisamos apenas de dois pontos e o valor da função nesses pontos.
Denominamos função injetora, a função que transforma diferentes elementos do domínio (conjunto A) em diferentes conjuntos da imagem (elementos do conjunto B), ou seja, não existe elemento da imagem que possui correspondência com mais de um elemento do domínio. ... Note que dois elementos do domínio possuem mesma imagem.
Por exemplo, se temos uma função f : Z→Z definida por y = x +1 ela é sobrejetora, pois Im = Z. Função injetora: uma função é injetora se os elementos distintos do domínio tiverem imagens distintas. Por exemplo, dada a função f : A→B, tal que f(x) = 3x.
Portanto, uma função é considerada bijetora quando possui contradomínio igual à imagem e, ao mesmo tempo, quando elementos distintos do domínio têm imagens distintas. Quando isso acontece, cada elemento do domínio ficará ligado a um único elemento da imagem, e vice-versa.
Uma função é inversível, ou seja, possui função inversa, se, e somente se, ela for bijetora. É importante lembrarmos o que é uma função bijetora, que é uma função injetora, ou seja, todo elemento da imagem possui um único correspondente no domínio.
A função injetora, também chamada de injetiva, é um tipo de função que apresenta elementos correspondentes em outra. Assim, dada uma função f (f: A → B), todos os elementos da primeira têm como imagem elementos distintos de B. No entanto, não há dois elementos distintos de A com a mesma imagem de B.
Uma função injetora, também chamada de função injetiva, é aquela em que cada elemento da imagem está ligado a um único elemento do domínio.