Se observarmos um polinômio qualquer P(x) = 5x4 – 3x3 + x2 – x + 2, para acharmos o seu valor numérico que é o valor de P(x), temos que ter um valor para a incógnita x. Então, se dissermos que x = 2 o valor que encontrarmos para P(2) quando substituirmos x por 2 será o valor numérico do polinômio.
Um fato importante a ser ressaltado é que a quantidade de raízes de um polinômio está diretamente relacionada ao grau deste polinômio. Por exemplo, um polinômio de grau 2 poderá ter no máximo duas raízes, sendo estes números complexos ou não. Por sua vez, o polinômio de grau 3 terá no máximo 3 raízes.
Para isso, tomamos os divisores de d, isto é, os números que permitam que a divisão de d por eles dê resto nulo. Um desses divisores será uma raiz do polinómio e, através desta, podemos fatorizar o polinómio de terceiro grau num produto de um polinómio de primeiro grau com um de segundo.
De maneira geral, dizemos que r é uma raiz de multiplicidade n, com n ≥ 1, da equação p(x) = 0, se: Observe que p(x) é divisível por (x – r)m e que a condição q(r) ≠ 0 significa que r não é raiz de q(x) e garante que a multiplicidade da raiz r não é maior que m.
Determinar a raiz quadrada consiste em calcular o número que, elevado ao quadrado, gera o valor desejado. Por exemplo, a raiz quadrada do número 25 corresponde ao número 5, pois 5² é igual a 25. Em algumas situações, descobrir esse número por tentativa pode ser muito cansativo e bastante complicado.
Para fatorar raiz quadrada, devemos efetuar a decomposição do número e agrupar seus fatores com índice igual a 2. Esta questão está relacionada com raiz quadrada. A raiz quadrada de um determinado número é um valor que, quando multiplicado por si próprio, possui como resultado o número inicial./span>
Multiplicando-se ou dividindo-se índice e expoente pelo mesmo número, a raiz não se altera. Na multiplicação ou divisão com radiciais de mesmo índice realiza-se a operação com os radicandos e mantém-se o índice do radical.
Método 2 de 2: Multiplicando raízes quadradas com coeficientes
A resposta é 474./span>