Infinitas soluções. Um sistema de equações lineares tem infinitas soluções quando os gráficos são exatamente a mesma reta.
Matemática. A forma geral da equação do 2º grau é ax² + bx + c = 0, onde a, b e c são números reais e a ≠ 0. Dessa forma, os coeficientes b e c podem assumir valor igual a zero, tornando a equação do 2º grau incompleta.
Soma e produto é um método prático para encontrar as raízes de equações do 2º grau do tipo x2 - Sx + P e é indicado quando as raízes são números inteiros. Desta forma, podemos encontrar as raízes da equação ax2 + bx + c = 0, se encontrarmos dois números que satisfaçam simultaneamente as relações indicadas acima.
Soma e Produto: Raízes da Equação do 2° Grau
Soma e produto é um método usado para calcular as raízes da equação do 2° grau, sendo, portanto, uma variação da fórmula de Bhaskara. Esse método estabelece duas relações entre as raízes e os coeficientes da equação.
A fórmula de Bhaskara é um método resolutivo para equações do segundo grau cujo nome homenageia o grande matemático indiano que a demonstrou. Essa fórmula nada mais é do que um método para encontrar as raízes reais de uma equação do segundo grau fazendo uso apenas de seus coeficientes.
Soma e produto é a técnica matemática para encontrar as raízes de uma equação de segundo grau sem o auxílio da Fórmula de Bhaskara. Esse método é adequado para as raízes que são valores inteiros, pois o coeficiente quadrático (a), linear (b) e constante (c) integram o conjunto dos números reais.
A figura dentro da raiz na fórmula de Bhaskara é nomeada de discriminante. Seu símbolo é a letra grega delta e apresenta a determinada fórmula: Fórmula da discriminante. Se o delta for maior que zero, a equação terá dois valores reais e distintos.