São definidas como retas concorrentes aquelas que se cruzam em um único ponto, formando quatro ângulos. De acordo com as medidas desses ângulos, elas ainda podem ser consideradas retas perpendiculares ou retas oblíquas.
Duas retas que se cruzam e possuem um único ponto em comum são chamadas de concorrentes.
A característica mais conhecida de duas retas perpendiculares é que no ponto de intersecção delas é formado um ângulo reto (de medida igual a 90°), mas com o estudo da geometria analítica em cima da análise da reta é possível dizer que duas retas perpendiculares terão os seus coeficientes angulares opostos e inversos.
Duas retas r e s são perpendiculares se, e somente se, são concorrentes e formam ângulos “retos”. Uma reta concorrente com um plano, num determinado ponto, é perpendicular ao plano quando é perpendicular a todas as retas do plano que passam pelo ponto determinado.
As retas paralelas são, basicamente, duas linhas retas que não apresentam um ponto em comum. Em outras palavras, são duas retas que não se encontram, mas que, necessariamente, tem o mesmo sentido. Outra característica que as definem é que elas mantêm a mesma medida de inclinação, chamado de coeficiente angular.
O teorema de Tales afirma que: Um feixe de retas paralelas determina sobre duas retas transversais segmentos proporcionais.
Teorema de Tales afirma que um feixe de retas paralelas determina, em duas transversais quaisquer, segmentos proporcionais. Desse modo, se temos duas retas paralelas “cortadas” por duas transversais, os segmentos formados por essa intersecção são proporcionais.
Duas retas r e s, paralelas distintas, e uma transversal t determinam oito ângulos, conforme figura. Dois quaisquer destes ângulos ou são suplementares ou são congruentes. Congruentes = que tem a mesma medida. Suplementares = a soma é igual a 180°.
Sendo assim, ângulos alternos internos são aqueles que estão na região interna das retas paralelas e em lados alternados da reta transversal.
Os ângulos d e f e também e e c podem ser classificados como ângulos alternos internos, pois estão na região interna e em lados alternados. Os ângulos d e e, bem como os c e f, podem ser classificados como ângulos colaterais internos, uma vez que estão na região interna e do mesmo lado em relação à reta t.
As retas r e s são paralelas (r//s), não possuem ponto em comum. A reta t é transversal às retas r e s, formando quatro ângulos com a reta s e quatro ângulos com a reta t, dessa forma notamos a formação de oito ângulos, os quais recebem nomes de acordo com a posição.
Ângulos são a região interna formada por duas semirretas que partem de um mesmo ponto. A palavra ângulo é usada para nomear dois objetos. O primeiro é a abertura entre duas semirretas que compartilham o mesmo ponto inicial ou entre dois segmentos de reta que possuem apenas uma extremidade comum.