EQST

Como Se Inverte Uma Matriz?

Como se inverte uma matriz? Essa é a pergunta que vamos responder e mostrar uma maneira simples de se lembrar dessa informação. Portanto, é essencial você conferir a matéria completamente.

Como se inverte uma matriz?

Para determinar a matriz inversa de uma matriz quadrada A de ordem n, basta descobrir uma matriz B tal que a multiplicação entre elas tenha como resultado uma matriz identidade de ordem n. Dizemos que B é a inversa de A e é representada por A-1. Dadas as matrizes A e B, verifique se uma é inversa da outra.

Como calcular matrizes a B?

Considerando as matrizes A, B, C e O (matriz nula), ambas de mesma ordem, valem:

  1. A + B = B + A (comutativa)
  2. (A + B) + C = A + (B + C) (associativa)
  3. A + 0 = 0 + A = A (existência do elemento neutro)
  4. A + (-A) = (-A) + A = 0 (existência do elemento oposto)
  5. A + C = B + C ⇔ A = B (cancelamento)

O que significa dizer que o produto entre duas matrizes não é comutativo?

e AB ≠ BA. Quando AB = BA, diz-se que A e B comutam. Embora a multiplicação de matrizes não seja comutativa, os determinantes de AB e BA são sempre iguais (se A e B são matrizes quadradas de dimensões iguais).

Como é feita a soma de determinante?

Ao multiplicarmos todos os elementos de uma linha ou de uma coluna pelo mesmo número e adicionarmos os resultados aos elementos correspondentes de outra linha ou coluna, formamos a matriz B, onde ocorre a seguinte igualdade: det A = det B. Esse teorema é atribuído a Jacobi.