Para determinar a matriz inversa de uma matriz quadrada A de ordem n, basta descobrir uma matriz B tal que a multiplicação entre elas tenha como resultado uma matriz identidade de ordem n. Dizemos que B é a inversa de A e é representada por A-1. Dadas as matrizes A e B, verifique se uma é inversa da outra.
Considerando as matrizes A, B, C e O (matriz nula), ambas de mesma ordem, valem:
e AB ≠ BA. Quando AB = BA, diz-se que A e B comutam. Embora a multiplicação de matrizes não seja comutativa, os determinantes de AB e BA são sempre iguais (se A e B são matrizes quadradas de dimensões iguais).
Ao multiplicarmos todos os elementos de uma linha ou de uma coluna pelo mesmo número e adicionarmos os resultados aos elementos correspondentes de outra linha ou coluna, formamos a matriz B, onde ocorre a seguinte igualdade: det A = det B. Esse teorema é atribuído a Jacobi.