Na construção de um gráfico de uma função do 1º grau basta indicar apenas dois valores pra x, pois o gráfico é uma reta e uma reta é formada por, no mínimo, 2 pontos. Apenas um ponto corta o eixo x, e esse ponto é a raiz da função. Apenas um ponto corta o eixo y, esse ponto é o valor de b.
Como a imagem da função f é um subconjunto próprio do seu contradomínio esta função não é sobrejetiva. Dizemos que uma função é bijetiva, bijetora, biunívoca ou um a um quando ela é ao mesmo tempo injetiva (injetora) e sobrejetiva (sobrejetora).
A função injetora, também chamada de injetiva, é um tipo de função que apresenta elementos correspondentes em outra. Assim, dada uma função f (f: A → B), todos os elementos da primeira têm como imagem elementos distintos de B. No entanto, não há dois elementos distintos de A com a mesma imagem de B.
Denominamos função injetora, a função que transforma diferentes elementos do domínio (conjunto A) em diferentes conjuntos da imagem (elementos do conjunto B), ou seja, não existe elemento da imagem que possui correspondência com mais de um elemento do domínio.
Por exemplo, a função f: IR IR definida por f(x)=x2 é uma função par, pois f(x)=x2=(-x)2=f(-x). Podemos notar a paridade dessa função observando o seu gráfico: Notamos no gráfico que existe uma simetria em relação ao eixo vertical.
Uma função y = f(x) é dita par se f(-x) = f(x), para todo x no domínio de f. ... Uma função y = f(x) é dita ímpar se f(-x) = - f(x), para todo x no domínio de f.
O gráfico de uma função afim é uma reta que pode tocar o eixo x do plano cartesiano em um único ponto, que é chamado de zero da função. ... Como é uma função do 1° grau, o gráfico da função linear é também uma reta. A diferença é que essa reta sempre intercepta a origem do sistema de coordenadas, isto é, o ponto (0, 0).