Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada. Assim, a função é decrescente em ]- Como a função é contínua em x = 2, então neste ponto a função apresenta ponto mínimo, como podemos observar da Figura 2. Outro exemplo: seja a função ./span>
Esse tipo de função pode ser classificada de acordo com o valor do coeficiente a, se a > 0, a função é crescente, caso a < 0, a função se torna decrescente. Vamos analisar as seguintes funções f(x) = 3x e f(x) = –3x, com domínio no conjunto dos números reais, na medida em que os valores de x aumentam.
➯ No gráfico da questão, os valores de y começam a aumentar quando x varia de 2 a 4. ➯ Portanto o intervalo que essa função é estritamente crescente é [2, 4]. Resposta: [2, 4]./span>
Escreva y = mx + b, que é a equação da reta, ou seja, uma equação linear. Aqui, "m" é o coeficiente angular, "b" é o coeficiente linear que intercepta o eixo-y quando x é igual a zero.
Cálculo do Coeficiente Angular
Verificado por especialistas A equação padrão é f(x) = ax + b, o qual, a = coeficiente angular e b = coeficiente linear. ... Caso a = 0, então não teremos mais um reta inclinada, somente teremos o coeficiente linear (b), como uma reta constante, paralela ao eixo das abscissas, o qual chamamos de função linear./span>
Taxa de Variação da Função do 1º Grau
Taxa de variação. , pode ser interpretada como a taxa de variação da variável y em relação à variável x, isto é, esta taxa pode ser interpretada como uma forma de medir "quão rápido" a variável y está mudando à medida em que a variável x muda.